PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o606.
Published online 2010 February 13. doi:  10.1107/S1600536810004721
PMCID: PMC2983721

1,2-Bis(4-ethynylphen­yl)disulfane

Abstract

In the title compound, C16H10S2, the S atoms are almost coplanar with the benzene rings to which they are bonded [deviations of 0.092 (1) and 0.022 (1) Å from their respective ring planes]. The benzene rings enclose a dihedral angle of 79.17 (3)°. An intra­molecular C—H(...)S hydrogen bond results in the formation of a five-membered ring. In the crystal structure, mol­ecules are stacked parallel to the a axis direction. π–π inter­actions between benzene rings are present, with a face-to-face stacking distance of 3.622 (10) Å.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For the synthetic procedure, see Yonezawa et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o606-scheme1.jpg

Experimental

Crystal data

  • C16H10S2
  • M r = 266.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o606-efi1.jpg
  • a = 5.981 (1) Å
  • b = 8.881 (2) Å
  • c = 13.269 (3) Å
  • α = 94.92 (3)°
  • β = 99.29 (3)°
  • γ = 104.45 (3)°
  • V = 667.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 293 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.864, T max = 0.896
  • 2887 measured reflections
  • 2620 independent reflections
  • 1969 reflections with I > 2σ(I)
  • R int = 0.033
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.194
  • S = 1.01
  • 2620 reflections
  • 169 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, XQ. DOI: 10.1107/S1600536810004721/im2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004721/im2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), is a kind of aromatic acetylide organic intermediate which can be used for many fields such as molecular electronic materials, organometallic chemistry etc. (Yonezawa et al., 2008). We herein report its crystal structure.

In the molecule of (I), (Fig.1), the bond lengths and angles are within normal ranges (Allen et al., 1987). S atoms are situated in the same plane as the benzene rings they are bonded to. Rings A (C3—C8) and B (C11—C16) are, of course, planar and they enclose a dihedral angle of 79.17 (3) °. An intramolecular C—H···S hydrogen bond (Table 1) results in the formation of a five-membered ring C (S1/S2/C14/C13/H13A). The distance between atoms S2 and H5A is 2.91 Å, which is significantly longer than the hydrogen bond between atoms S1 and H13A.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the a axis. There are also the π-π interactions of benzene rings with a face-to-face stacking distance of 3.622 Å.

Experimental

The title compound, (I) was prepared by a literature method (Yonezawa et al., 2008). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in hexane (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and 0.95 Å for acetylide H. In the refinement all hydrogens were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), with x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C16H10S2Z = 2
Mr = 266.36F(000) = 276
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Melting point: 391 K
a = 5.981 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.881 (2) ÅCell parameters from 25 reflections
c = 13.269 (3) Åθ = 10–13°
α = 94.92 (3)°µ = 0.38 mm1
β = 99.29 (3)°T = 293 K
γ = 104.45 (3)°Block, colourless
V = 667.7 (2) Å30.40 × 0.40 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1969 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = −7→7
Absorption correction: ψ scan (North et al., 1968)k = −10→10
Tmin = 0.864, Tmax = 0.896l = 0→16
2887 measured reflections3 standard reflections every 200 reflections
2620 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.060P)2 + 2.P] where P = (Fo2 + 2Fc2)/3
2620 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.0903 (2)0.50232 (15)0.20304 (9)0.0594 (4)
C10.8307 (10)0.2056 (7)0.5708 (4)0.0674 (13)
S2−0.1535 (2)0.31363 (17)0.11850 (10)0.0619 (4)
C20.7075 (8)0.2523 (6)0.5110 (4)0.0561 (11)
C30.5594 (8)0.3096 (5)0.4359 (3)0.0479 (10)
C40.3177 (9)0.2406 (6)0.4127 (4)0.0606 (12)
H4A0.25220.15730.44610.073*
C50.1745 (8)0.2953 (6)0.3402 (4)0.0571 (11)
H5A0.01370.24750.32420.069*
C60.2705 (8)0.4209 (5)0.2916 (3)0.0476 (10)
C70.5073 (8)0.4891 (6)0.3143 (4)0.0575 (11)
H7A0.57220.57180.28030.069*
C80.6516 (8)0.4362 (6)0.3876 (4)0.0578 (11)
H8A0.81160.48630.40420.069*
C90.3291 (10)0.0564 (7)−0.3034 (4)0.0686 (14)
C100.2502 (8)0.0917 (6)−0.2347 (4)0.0561 (11)
C110.1571 (8)0.1440 (5)−0.1475 (3)0.0503 (10)
C120.2959 (8)0.2639 (5)−0.0736 (3)0.0522 (10)
H12A0.45080.3089−0.07910.063*
C130.2091 (8)0.3179 (6)0.0079 (4)0.0567 (11)
H13A0.30570.39860.05700.068*
C14−0.0207 (8)0.2532 (5)0.0175 (3)0.0490 (10)
C15−0.1597 (8)0.1311 (5)−0.0558 (4)0.0542 (11)
H15A−0.31330.0845−0.04930.065*
C16−0.0744 (8)0.0782 (6)−0.1376 (3)0.0542 (11)
H16A−0.1714−0.0022−0.18690.065*
H90.385 (8)0.019 (5)−0.362 (2)0.065*
H10.947 (6)0.176 (6)0.617 (3)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0706 (8)0.0593 (7)0.0513 (7)0.0280 (6)0.0044 (5)0.0062 (5)
C10.069 (3)0.071 (3)0.062 (3)0.021 (3)0.006 (3)0.012 (3)
S20.0527 (7)0.0807 (9)0.0534 (7)0.0229 (6)0.0062 (5)0.0069 (6)
C20.055 (3)0.060 (3)0.049 (3)0.014 (2)0.004 (2)0.002 (2)
C30.051 (2)0.055 (2)0.042 (2)0.023 (2)0.0102 (18)0.0059 (18)
C40.059 (3)0.064 (3)0.060 (3)0.017 (2)0.010 (2)0.018 (2)
C50.044 (2)0.062 (3)0.059 (3)0.011 (2)0.001 (2)0.006 (2)
C60.050 (2)0.045 (2)0.046 (2)0.0144 (18)0.0069 (18)0.0012 (18)
C70.059 (3)0.058 (3)0.057 (3)0.013 (2)0.013 (2)0.017 (2)
C80.047 (2)0.063 (3)0.057 (3)0.006 (2)0.004 (2)0.010 (2)
C90.072 (3)0.070 (3)0.068 (3)0.024 (3)0.021 (3)0.005 (3)
C100.059 (3)0.056 (3)0.053 (3)0.017 (2)0.004 (2)0.009 (2)
C110.053 (3)0.053 (2)0.049 (2)0.021 (2)0.0062 (19)0.0157 (19)
C120.046 (2)0.058 (3)0.050 (2)0.014 (2)0.0022 (19)0.007 (2)
C130.043 (2)0.067 (3)0.053 (3)0.010 (2)−0.0027 (19)0.005 (2)
C140.057 (3)0.054 (2)0.040 (2)0.023 (2)0.0075 (18)0.0115 (18)
C150.040 (2)0.060 (3)0.057 (3)0.010 (2)−0.0013 (19)0.010 (2)
C160.052 (3)0.058 (3)0.048 (2)0.016 (2)−0.0040 (19)0.001 (2)

Geometric parameters (Å, °)

S1—C61.786 (4)C8—H8A0.9300
S1—S22.030 (2)C9—C101.147 (7)
C1—C21.169 (7)C9—H90.959 (10)
C1—H10.956 (10)C10—C111.452 (7)
S2—C141.774 (4)C11—C121.379 (6)
C2—C31.436 (6)C11—C161.394 (6)
C3—C81.382 (6)C12—C131.374 (6)
C3—C41.393 (6)C12—H12A0.9300
C4—C51.384 (6)C13—C141.382 (6)
C4—H4A0.9300C13—H13A0.9300
C5—C61.383 (6)C14—C151.386 (6)
C5—H5A0.9300C15—C161.368 (7)
C6—C71.366 (6)C15—H15A0.9300
C7—C81.386 (6)C16—H16A0.9300
C7—H7A0.9300
C6—S1—S2104.69 (15)C7—C8—H8A119.8
C2—C1—H1173 (3)C10—C9—H9175 (3)
C14—S2—S1105.55 (17)C9—C10—C11177.3 (6)
C1—C2—C3178.8 (5)C12—C11—C16118.5 (4)
C8—C3—C4118.7 (4)C12—C11—C10120.2 (4)
C8—C3—C2121.0 (4)C16—C11—C10121.4 (4)
C4—C3—C2120.3 (4)C13—C12—C11121.0 (4)
C5—C4—C3120.4 (4)C13—C12—H12A119.5
C5—C4—H4A119.8C11—C12—H12A119.5
C3—C4—H4A119.8C12—C13—C14120.6 (4)
C6—C5—C4120.0 (4)C12—C13—H13A119.7
C6—C5—H5A120.0C14—C13—H13A119.7
C4—C5—H5A120.0C13—C14—C15118.5 (4)
C7—C6—C5119.7 (4)C13—C14—S2124.8 (4)
C7—C6—S1118.7 (3)C15—C14—S2116.7 (4)
C5—C6—S1121.5 (3)C16—C15—C14121.0 (4)
C6—C7—C8120.6 (4)C16—C15—H15A119.5
C6—C7—H7A119.7C14—C15—H15A119.5
C8—C7—H7A119.7C15—C16—C11120.4 (4)
C3—C8—C7120.5 (4)C15—C16—H16A119.8
C3—C8—H8A119.8C11—C16—H16A119.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···S10.932.713.216 (5)115

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2180).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yonezawa, T., Uchida, K., Yamanoi, Y., Horinouchi, S., Terasaki, N. & Nishihara, H. (2008). Phys. Chem. Chem. Phys.10, 6925–6927. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography