PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o666.
Published online 2010 February 20. doi:  10.1107/S1600536810006033
PMCID: PMC2983720

2,2′-(2,6-Pyridinedi­yl)diquinoline

Abstract

The title mol­ecule, C23H15N3, is a terpyridine derivative resulting from the Friedländer annulation between 2,6-diacetyl­pyridine and N,N′-bis­(2-amino­benz­yl)ethyl­ene­di­amine. The asymmetric unit contains one half-mol­ecule, the complete mol­ecule being generated by a mirror plane (one N atom and one C atom lie on the plane). The mol­ecule, although aromatic, is deformed from planarity as a result of crystal packing forces: mol­ecules are stacked along the short c axis, with a short separation of 3.605 (1) Å between the mean planes. The bent mol­ecular shape is reflected in the dihedral angle of 16.10 (5)° between the essentially planar quinoline groups. In addition to π(...)π inter­actions, the crystal structure features weak inter-stack C—H(...)N contacts involving atoms of the central pyridine rings which lie in a common crystallographic m plane.

Related literature

For the synthesis and the coordination behavior of the title mol­ecule, see: Bertrand et al. (2009 [triangle]); Harris et al. (1969 [triangle]); Klassen et al. (1975 [triangle]). For a terpyridine derivative closely related to the title mol­ecule, see: Sasaki et al. (1998 [triangle]). For the Friedländer condensation as a tool for the preparation of quinolines, see: Da Costa et al. (2009 [triangle]); Sridharan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o666-scheme1.jpg

Experimental

Crystal data

  • C23H15N3
  • M r = 333.38
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o666-efi1.jpg
  • a = 11.960 (2) Å
  • b = 34.509 (6) Å
  • c = 3.9509 (5) Å
  • V = 1630.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Siemens P4 diffractometer
  • 5603 measured reflections
  • 1469 independent reflections
  • 1032 reflections with I > 2σ(I)
  • R int = 0.031
  • 2 standard reflections every 48 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.118
  • S = 1.02
  • 1469 reflections
  • 122 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXTL-Plus.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006033/xu2726sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006033/xu2726Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank FCQ-UANL (Project No. 03-6375-QMT-08-006) and PAICYT-UANL (Project No. CA-1260-06) for supporting this work.

supplementary crystallographic information

Comment

Thirty years after cisplatin was approved by the FDA for its use as a chemotherapy drug, studies regarding interactions between platinum-based complexes and basic sites in DNA remain actives. Recently, Bertrand et al. (2009) showed that PtII cationic complexes bearing 2,2':6',2"-terpyridine or a terpyridine derivative as ligand have the ability to platinate the human telomeric G-quadruplex. Interestingly, both the binding affinity and the platination activity seem to be determined by the extension of the aromatic surface of the terpyridine derivative. One of the ligands used in that work was 2,2'-(2,6-pyridinediyl)bis-quinoline, synthesized through the Friedländer condensation (Da Costa et al., 2009; Sridharan et al., 2009) between 2,6-diacetylpyridine and 2-nitrobenzaldehyde. We now report the crystal structure of this aromatic ligand.

The title terpyridine derivative was obtained as a by-product during the preparation of a macrocyclic ligand (see Experimental). More suitable synthesis are however available in the literature (Harris et al., 1969; Klassen et al., 1975; Bertrand et al., 2009). The molecule (Fig. 1) displays the crystallographic m symmetry, with atoms N1, C1 and H1A placed in the mirror planes normal to [010]. The molecular conformation observed in the solid-state is not suitable for coordination through the three N atoms: the quinoline N atoms are placed in a trans arrangement with respect to the central pyridine N atom, while a cis,cis conformation is required for the molecule to be a terdentate ligand. However, as invariably found in non-hindered terpyridine derivatives, aromatic fragments are free to rotate, for example about the C3—C4 bond in the case of the title molecule. Such a behavior has been reported, for example, for the coordination to RuII of a closely related terpyridine ligand, namely 2,6-bis(5,6,7,8-tetrahydroquinol-2-yl)pyridine (Sasaki et al., 1998).

Molecules are stacked along the short axis c, at a distance of 3.605 Å (separation between two mean planes passing through two neighboring molecules in the [001] direction, see Fig.2, inset). This short separation, although larger than that observed in graphite (ca. 3.36 Å), results in strong π···π interactions in the stacks, which, in turn, deform the molecules from planarity. The dihedral angle between the central pyridine ring and the quinoline substituent is 8.13 (8)°. The bent shape is also reflected in the dihedral angle between quinoline systems, 16.10 (5)° (Fig. 2, inset). Finally, the crystal structure is completed by weak intermolecular C—H···N contacts (Table 1 and Fig. 2), linking the stacks in the [100] direction.

Experimental

A mixture of 305 mg of 2,6-diacetylpyridine and 823 mg of Ce(NO3)3.6H2O in methanol (25 ml) was refluxed for 30 min, followed by slow addition of a dissolution of N,N'-bis(2-aminobenzyl)ethylenediamine (530 mg in 25 ml methanol). The mixture was kept under these conditions for 3.5 h, and then cooled to room temperature, giving a red precipitate. After 1.5 month, the resulting solid was filtered, washed with cold methanol, diethyl ether, and air dried. Suitable single crystals were picked off from the solid. m.p. 495–497 K (lit. 500–501 K: Klassen et al., 1975).

Refinement

All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 Å. Isotropic displacement parameters for H atoms were calculated from displacements of parent C atoms: Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids at the 30% probability level for non-H atoms. Non-labeled atoms are generated by symmetry code x, 1/2-y, z.
Fig. 2.
A part of the crystal structure, viewed down c axis. Dashed lines represent non-bonding intermolecular contacts. The inset shows a part of a stack along [001]. Two least-squares planes are represented (red), which were computed using all atoms in each ...

Crystal data

C23H15N3Dx = 1.358 Mg m3
Mr = 333.38Melting point = 495–497 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 100 reflections
a = 11.960 (2) Åθ = 5.5–11.7°
b = 34.509 (6) ŵ = 0.08 mm1
c = 3.9509 (5) ÅT = 298 K
V = 1630.7 (5) Å3Plate, orange
Z = 40.40 × 0.20 × 0.10 mm
F(000) = 696

Data collection

Siemens P4 diffractometerRint = 0.031
Radiation source: X-rayθmax = 25.1°, θmin = 2.4°
graphiteh = −14→14
ω scansk = −41→41
5603 measured reflectionsl = −4→4
1469 independent reflections2 standard reflections every 48 reflections
1032 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1644P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1469 reflectionsΔρmax = 0.16 e Å3
122 parametersΔρmin = −0.11 e Å3
0 restraintsExtinction correction: SHELXTL-Plus, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0069 (16)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.05056 (13)0.25000.0324 (4)0.0465 (5)
C1−0.15745 (18)0.2500−0.2714 (6)0.0572 (6)
H1A−0.22800.2500−0.37030.069*
C2−0.10509 (12)0.28415 (5)−0.1980 (4)0.0539 (4)
H2A−0.13880.3077−0.25060.065*
C3−0.00108 (11)0.28327 (4)−0.0443 (4)0.0465 (4)
C40.05844 (12)0.32017 (4)0.0278 (4)0.0468 (4)
N50.00977 (10)0.35190 (4)−0.0808 (3)0.0522 (4)
C60.06408 (13)0.38627 (4)−0.0411 (4)0.0522 (4)
C70.01369 (16)0.42018 (5)−0.1667 (5)0.0667 (5)
H7A−0.05630.4188−0.26860.080*
C80.06583 (19)0.45476 (5)−0.1410 (5)0.0752 (6)
H8A0.03190.4769−0.22790.090*
C90.17008 (19)0.45757 (5)0.0147 (5)0.0762 (6)
H9A0.20490.48160.03260.091*
C100.22110 (16)0.42554 (5)0.1402 (5)0.0660 (5)
H10A0.29070.42780.24370.079*
C110.16971 (13)0.38897 (4)0.1153 (4)0.0528 (4)
C120.21698 (13)0.35438 (4)0.2379 (4)0.0555 (4)
H12A0.28590.35490.34680.067*
C130.16215 (12)0.32044 (4)0.1973 (4)0.0511 (4)
H13A0.19250.29750.28040.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0355 (9)0.0555 (11)0.0484 (10)0.0000.0022 (8)0.000
C10.0364 (11)0.0734 (16)0.0619 (14)0.000−0.0071 (11)0.000
C20.0404 (8)0.0637 (10)0.0576 (10)0.0072 (7)−0.0014 (7)−0.0021 (8)
C30.0361 (7)0.0586 (9)0.0448 (8)0.0043 (7)0.0045 (6)−0.0018 (7)
C40.0395 (8)0.0554 (9)0.0456 (8)0.0054 (7)0.0048 (7)−0.0030 (7)
N50.0442 (7)0.0569 (8)0.0555 (8)0.0078 (6)0.0016 (6)−0.0002 (7)
C60.0506 (9)0.0563 (10)0.0498 (9)0.0089 (8)0.0066 (7)−0.0027 (8)
C70.0688 (11)0.0654 (11)0.0659 (11)0.0147 (9)0.0013 (9)0.0016 (9)
C80.0985 (16)0.0599 (12)0.0672 (12)0.0145 (11)0.0066 (12)0.0053 (10)
C90.0981 (16)0.0617 (11)0.0687 (13)−0.0086 (11)0.0121 (11)−0.0025 (10)
C100.0672 (11)0.0673 (11)0.0635 (11)−0.0064 (10)0.0044 (9)−0.0083 (9)
C110.0522 (9)0.0561 (10)0.0501 (9)0.0020 (7)0.0060 (8)−0.0062 (8)
C120.0443 (8)0.0648 (11)0.0575 (10)0.0031 (8)−0.0032 (7)−0.0078 (8)
C130.0426 (8)0.0545 (9)0.0561 (9)0.0077 (7)−0.0033 (7)−0.0043 (7)

Geometric parameters (Å, °)

N1—C3i1.3383 (16)C7—C81.350 (2)
N1—C31.3383 (16)C7—H7A0.9300
C1—C21.3658 (18)C8—C91.394 (3)
C1—C2i1.3658 (18)C8—H8A0.9300
C1—H1A0.9300C9—C101.357 (2)
C2—C31.385 (2)C9—H9A0.9300
C2—H2A0.9300C10—C111.407 (2)
C3—C41.486 (2)C10—H10A0.9300
C4—N51.3123 (18)C11—C121.407 (2)
C4—C131.410 (2)C12—C131.352 (2)
N5—C61.3615 (19)C12—H12A0.9300
C6—C71.407 (2)C13—H13A0.9300
C6—C111.410 (2)
C3i—N1—C3118.13 (17)C6—C7—H7A119.6
C2—C1—C2i119.3 (2)C7—C8—C9120.52 (18)
C2—C1—H1A120.3C7—C8—H8A119.7
C2i—C1—H1A120.3C9—C8—H8A119.7
C1—C2—C3119.07 (15)C10—C9—C8120.48 (18)
C1—C2—H2A120.5C10—C9—H9A119.8
C3—C2—H2A120.5C8—C9—H9A119.8
N1—C3—C2122.20 (14)C9—C10—C11120.57 (18)
N1—C3—C4118.07 (13)C9—C10—H10A119.7
C2—C3—C4119.69 (13)C11—C10—H10A119.7
N5—C4—C13122.69 (14)C12—C11—C10124.15 (16)
N5—C4—C3116.09 (13)C12—C11—C6117.07 (14)
C13—C4—C3121.21 (13)C10—C11—C6118.78 (15)
C4—N5—C6118.54 (13)C13—C12—C11119.96 (14)
N5—C6—C7118.67 (15)C13—C12—H12A120.0
N5—C6—C11122.39 (14)C11—C12—H12A120.0
C7—C6—C11118.92 (15)C12—C13—C4119.27 (14)
C8—C7—C6120.72 (18)C12—C13—H13A120.4
C8—C7—H7A119.6C4—C13—H13A120.4
C2i—C1—C2—C3−1.4 (3)C6—C7—C8—C9−0.8 (3)
C3i—N1—C3—C20.1 (3)C7—C8—C9—C100.5 (3)
C3i—N1—C3—C4−177.46 (10)C8—C9—C10—C110.0 (3)
C1—C2—C3—N10.6 (3)C9—C10—C11—C12179.83 (16)
C1—C2—C3—C4178.17 (16)C9—C10—C11—C6−0.3 (3)
N1—C3—C4—N5173.63 (14)N5—C6—C11—C12−1.3 (2)
C2—C3—C4—N5−4.0 (2)C7—C6—C11—C12179.88 (15)
N1—C3—C4—C13−5.2 (2)N5—C6—C11—C10178.75 (14)
C2—C3—C4—C13177.17 (14)C7—C6—C11—C100.0 (2)
C13—C4—N5—C63.0 (2)C10—C11—C12—C13−178.88 (16)
C3—C4—N5—C6−175.81 (13)C6—C11—C12—C131.2 (2)
C4—N5—C6—C7178.05 (14)C11—C12—C13—C40.8 (2)
C4—N5—C6—C11−0.7 (2)N5—C4—C13—C12−3.1 (2)
N5—C6—C7—C8−178.24 (16)C3—C4—C13—C12175.65 (14)
C11—C6—C7—C80.6 (2)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···N1ii0.932.723.641 (3)169

Symmetry codes: (ii) x−1/2, −y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2726).

References

  • Bertrand, H., Bombard, S., Monchaud, D., Talbot, E., Guédin, A., Mergny, J.-L., Grünert, R., Bednarski, P. J. & Teulade-Fichou, M.-P. (2009). Org. Biomol. Chem.7, 2864–2871. [PubMed]
  • Da Costa, J. S., Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc 20, 1448–1454.
  • Harris, C. M., Patil, H. R. H. & Sinn, E. (1969). Inorg. Chem.8, 101–104.
  • Klassen, D. M., Hudson, C. W. & Shaddix, E. L. (1975). Inorg. Chem.14, 2733–2736.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Sasaki, I., Daran, J. C., Aït-Haddou, H. & Balavoine, G. G. A. (1998). Inorg. Chem. Commun.1, 354–357.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sridharan, V., Ribelles, P., Ramos, Ma. T. & Menéndez, J. C. (2009). J. Org. Chem 74, 5715–5718. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography