PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o549–o550.
Published online 2010 February 6. doi:  10.1107/S1600536810004289
PMCID: PMC2983713

N-Carbethoxy-N′-[3-(4-methylphenyl)-1H-1,2,4-triazol-5-yl]thiourea

Abstract

The title compound, [systematic name: ethyl ({[3-(4-methylphenyl)-1H-1,2,4-triazol-5-yl]amino}carbonothioyl)carbamate], C13H16N5O2S, exists in the 3-aryl-5-thio­ureido-1H-1,2,4-triazole tautomeric form. The mol­ecular structure is stabilized by intra­molecular hydrogen bonding (N—H(...)S=C between the endocyclic N-bound H atom and the thio­ureido S atom, and N—H(...)O=C within the ethoxy­carbonyl­thio­urea unit), both arranged in an S(6) graph-set motif. The mean planes of the phenyl and 1,2,4-triazole rings make a dihedral angle of 6.59 (10)°. In the crystal structure, the mol­ecules form two types of centrosymmetric dimers connected by inter­molecular hydrogen bonds; in the first, the N—NH triazole sides of two mol­ecules are connected [R 2 2(6) graph-set motif] and the second is an N—H(...)S=C inter­action between the imide H atoms and the thio­carbonyl S atoms [R 2 2(8) graph-set motif]. Together, they form a network parallel to the (111) plane.

Related literature

For the synthesis, tautomerism and structures of related 1,2,4-triazoles, see: Dolzhenko et al. (2009a [triangle],b [triangle],c [triangle], 2010 [triangle]); Buzykin et al. (2006 [triangle]). For related carbethoxy­thio­ureas, see: Dolzhenko et al. (2010 [triangle]); Huang et al. (2009 [triangle]); Lin et al. (2004 [triangle], 2007 [triangle]); Su et al. (2006 [triangle]); Zhang et al. (2003 [triangle], 2007 [triangle]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o549-scheme1.jpg

Experimental

Crystal data

  • C13H15N5O2S
  • M r = 305.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o549-efi1.jpg
  • a = 6.8430 (5) Å
  • b = 8.7789 (6) Å
  • c = 12.2563 (9) Å
  • α = 90.780 (1)°
  • β = 99.425 (1)°
  • γ = 101.279 (1)°
  • V = 711.52 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 K
  • 0.56 × 0.46 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.877, T max = 0.945
  • 9015 measured reflections
  • 3243 independent reflections
  • 3088 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 1.07
  • 3243 reflections
  • 204 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004289/kp2249sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004289/kp2249Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0019/2008).

supplementary crystallographic information

Comment

Recently, we reported the crystal structure of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (Dolzhenko et al., 2010). Herein, in continuation of our investigations on annular tautomerism of 1,2,4-triazoles (Figs 3 and 4) in solutions (Dolzhenko et al., 2009a) and crystalline state (Dolzhenko et al., 2009b,c, 2010), we study the similar compound with methyl group presented in para-position of the phenyl ring. The electron donating effect of the methyl group might shift the tautomeric equilibrium towards the 5-aryl-3-thioureido-1H-1,2,4-triazole tautomeric form (Buzykin et al., 2006; Dolzhenko et al., 2009a). However, we found that this effect is not sufficient to alter the structure. Analogously to N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (Dolzhenko et al., 2010), the title compound crystallizes with similar molecular structure (Fig. 1) and packing (Fig. 2). The N2—H···S1 hydrogen bonding between the endocyclic N(3)H proton of the triazole ring and the thioureido sulfur S1 atom (Fig.1 and Table 1) arranged in a S(6) graph-set motif (Bernstein et al., 1995) is believed to be an essential factor stabilizing the tautomer. The triazole ring is planar with an r.m.s. deviation of 0.0069 Å. It makes a dihedral angle of 6.59 (10)° with the phenyl ring. The C10—N4 bond is significantly shorter (1.3414 (16) Å) than other C—N bonds of the carbethoxythiourea group (1.384–1.385 Å). Similarly to the previously reported related structures (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003), the carbethoxythiourea group of the title compound adopts (Z)-configuration across the thiourea C10—N4 bond and (E)-configuration across the C11—N5 bond. The strong intramolecular N4—H···O1═C11 hydrogen bonding arranged in common for carbethoxythioureas (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003) S(6) graph-set motif stabilizes this configuration.

In the crystal, the molecules form two types of centrosymmetric dimmers (Fig. 2, Table 1). The N3—N2H sides of two molecules are connected by intermolecular hydrogen bonds making the R22(6) graph-set motif. Atom N5 is also involved in the intermolecular N—H···S interaction with the thiocarbonyl atom S1 of adjacent molecule making another pair with the R22(8) graph-set motif similar to that observed in other carbethoxythioureas (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). Together, these hydrogen bonds connect molecules in a network parallel to the (111) plane.

Experimental

The title compound (I) was synthesized by nucleophilic addition of 3(5)-amino-5(3)-(4-methylphenyl)-1H-1,2,4-triazole (Dolzhenko et al., 2009a) to ethoxycarbonyl isothiocyanate in DMF solution at room temperature (Fig. 3). Single crystals suitable for crystallographic analysis were grown by recrystallization from ethanol.

Refinement

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.95 Å for Caryl—H, 0.99 Å for methylenic protons and 0.98 Å for methyl group protons; Uiso(H) = 1.2Ueq(Caryl), Uiso(H) = 1.2Ueq(Cmethylenic) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined freely.

Figures

Fig. 1.
The molecular structure of I with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing in the cell viewed along the axis c.
Fig. 3.
Synthesis of N-carbethoxy-N'-[3-(4-methylphenyl)-1H-1,2,4-triazol-5- yl]thiourea.
Fig. 4.
Annular tautomerism in N-carbethoxy-N'-[3(5)-(4-methylphenyl)-1(4)H-1,2,4-\ triazol-5(3)-yl]thiourea.

Crystal data

C13H15N5O2SZ = 2
Mr = 305.36F(000) = 320
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Melting point: 489 K
a = 6.8430 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7789 (6) ÅCell parameters from 6864 reflections
c = 12.2563 (9) Åθ = 2.4–27.5°
α = 90.780 (1)°µ = 0.24 mm1
β = 99.425 (1)°T = 100 K
γ = 101.279 (1)°Block, colourless
V = 711.52 (9) Å30.56 × 0.46 × 0.24 mm

Data collection

Bruker SMART APEX CCD diffractometer3243 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −8→8
Tmin = 0.877, Tmax = 0.945k = −11→11
9015 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0529P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.23286 (5)0.36065 (4)0.52820 (2)0.01721 (11)
O10.17169 (14)0.49382 (11)0.16661 (8)0.0193 (2)
O2−0.10045 (14)0.57606 (10)0.20980 (8)0.0174 (2)
N10.62121 (16)0.25023 (12)0.28575 (9)0.0155 (2)
N20.51358 (16)0.16832 (13)0.43785 (9)0.0162 (2)
H2N0.440 (3)0.145 (2)0.4885 (16)0.029 (5)*
N30.65581 (16)0.08284 (13)0.42368 (9)0.0173 (2)
N40.35689 (16)0.35967 (12)0.33186 (9)0.0156 (2)
H4N0.343 (3)0.390 (2)0.2676 (16)0.024 (4)*
N50.09899 (17)0.48816 (13)0.34439 (9)0.0163 (2)
H5N0.016 (3)0.512 (2)0.3841 (15)0.022 (4)*
C11.3339 (2)−0.07535 (17)0.13315 (12)0.0239 (3)
H1A1.4199−0.12310.18880.036*
H1B1.41690.01320.10360.036*
H1C1.2688−0.15210.07280.036*
C21.17417 (19)−0.02005 (15)0.18576 (11)0.0180 (3)
C31.0630 (2)0.08361 (15)0.13251 (11)0.0184 (3)
H31.08980.12040.06280.022*
C40.91420 (19)0.13361 (14)0.17991 (11)0.0169 (3)
H40.83910.20290.14200.020*
C50.87416 (18)0.08280 (14)0.28277 (10)0.0149 (2)
C60.98549 (19)−0.01994 (14)0.33704 (11)0.0169 (3)
H60.9604−0.05540.40730.020*
C71.13279 (19)−0.07028 (15)0.28828 (11)0.0180 (3)
H71.2069−0.14050.32580.022*
C80.71732 (18)0.13779 (14)0.33214 (10)0.0144 (2)
C90.49501 (18)0.26348 (14)0.35425 (10)0.0143 (2)
C100.23405 (18)0.40227 (14)0.39616 (10)0.0144 (2)
C110.06534 (19)0.51753 (14)0.23292 (11)0.0156 (2)
C12−0.1632 (2)0.59864 (16)0.09263 (11)0.0197 (3)
H12A−0.20360.49720.05050.024*
H12B−0.05100.66330.06220.024*
C13−0.3400 (2)0.67920 (17)0.08463 (12)0.0234 (3)
H13A−0.44640.61700.11920.035*
H13B−0.39260.69110.00660.035*
H13C−0.29580.78190.12290.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02084 (18)0.01893 (17)0.01474 (17)0.00843 (12)0.00598 (12)0.00253 (11)
O10.0225 (5)0.0213 (5)0.0182 (4)0.0100 (4)0.0082 (4)0.0051 (4)
O20.0192 (4)0.0177 (4)0.0178 (4)0.0082 (3)0.0049 (3)0.0034 (3)
N10.0169 (5)0.0127 (5)0.0181 (5)0.0040 (4)0.0049 (4)0.0016 (4)
N20.0162 (5)0.0182 (5)0.0172 (5)0.0076 (4)0.0066 (4)0.0035 (4)
N30.0169 (5)0.0190 (5)0.0195 (5)0.0089 (4)0.0067 (4)0.0042 (4)
N40.0183 (5)0.0161 (5)0.0147 (5)0.0070 (4)0.0051 (4)0.0029 (4)
N50.0187 (5)0.0170 (5)0.0166 (5)0.0089 (4)0.0067 (4)0.0019 (4)
C10.0195 (6)0.0250 (7)0.0298 (7)0.0071 (5)0.0087 (5)−0.0045 (6)
C20.0151 (6)0.0157 (6)0.0232 (6)0.0021 (5)0.0050 (5)−0.0045 (5)
C30.0209 (6)0.0161 (6)0.0195 (6)0.0026 (5)0.0082 (5)0.0005 (5)
C40.0179 (6)0.0143 (6)0.0197 (6)0.0044 (5)0.0050 (5)0.0020 (5)
C50.0147 (6)0.0127 (5)0.0176 (6)0.0023 (4)0.0043 (5)−0.0010 (4)
C60.0182 (6)0.0155 (6)0.0172 (6)0.0037 (5)0.0032 (5)0.0013 (5)
C70.0167 (6)0.0148 (6)0.0225 (6)0.0054 (5)0.0011 (5)−0.0004 (5)
C80.0142 (5)0.0130 (5)0.0161 (6)0.0028 (4)0.0026 (4)0.0002 (4)
C90.0143 (5)0.0122 (5)0.0165 (6)0.0029 (4)0.0027 (4)−0.0005 (4)
C100.0153 (6)0.0114 (5)0.0167 (6)0.0025 (4)0.0036 (4)0.0000 (4)
C110.0181 (6)0.0109 (5)0.0186 (6)0.0038 (4)0.0043 (5)0.0014 (4)
C120.0219 (6)0.0217 (6)0.0176 (6)0.0091 (5)0.0034 (5)0.0042 (5)
C130.0197 (6)0.0241 (7)0.0286 (7)0.0090 (5)0.0048 (5)0.0060 (5)

Geometric parameters (Å, °)

S1—C101.6649 (13)C1—H1C0.9800
O1—C111.2173 (16)C2—C71.3915 (19)
O2—C111.3260 (15)C2—C31.3988 (18)
O2—C121.4578 (15)C3—C41.3889 (17)
N1—C91.3184 (16)C3—H30.9500
N1—C81.3701 (15)C4—C51.3943 (17)
N2—C91.3364 (16)C4—H40.9500
N2—N31.3704 (14)C5—C61.3984 (17)
N2—H2N0.865 (19)C5—C81.4691 (17)
N3—C81.3261 (16)C6—C71.3903 (17)
N4—C101.3414 (16)C6—H60.9500
N4—C91.3839 (15)C7—H70.9500
N4—H4N0.830 (19)C12—C131.5067 (18)
N5—C111.3840 (16)C12—H12A0.9900
N5—C101.3853 (16)C12—H12B0.9900
N5—H5N0.856 (18)C13—H13A0.9800
C1—C21.5088 (17)C13—H13B0.9800
C1—H1A0.9800C13—H13C0.9800
C1—H1B0.9800
C11—O2—C12114.69 (10)C7—C6—C5120.07 (12)
C9—N1—C8102.36 (10)C7—C6—H6120.0
C9—N2—N3109.09 (10)C5—C6—H6120.0
C9—N2—H2N130.3 (12)C6—C7—C2121.48 (12)
N3—N2—H2N119.7 (12)C6—C7—H7119.3
C8—N3—N2102.49 (10)C2—C7—H7119.3
C10—N4—C9129.41 (11)N3—C8—N1114.56 (11)
C10—N4—H4N116.0 (12)N3—C8—C5123.37 (11)
C9—N4—H4N114.5 (12)N1—C8—C5122.06 (11)
C11—N5—C10126.49 (11)N1—C9—N2111.46 (11)
C11—N5—H5N117.7 (12)N1—C9—N4120.65 (11)
C10—N5—H5N115.0 (12)N2—C9—N4127.77 (11)
C2—C1—H1A109.5N4—C10—N5114.73 (11)
C2—C1—H1B109.5N4—C10—S1125.77 (9)
H1A—C1—H1B109.5N5—C10—S1119.49 (9)
C2—C1—H1C109.5O1—C11—O2125.35 (12)
H1A—C1—H1C109.5O1—C11—N5125.32 (12)
H1B—C1—H1C109.5O2—C11—N5109.33 (11)
C7—C2—C3118.02 (11)O2—C12—C13106.66 (11)
C7—C2—C1121.23 (12)O2—C12—H12A110.4
C3—C2—C1120.75 (12)C13—C12—H12A110.4
C4—C3—C2121.03 (12)O2—C12—H12B110.4
C4—C3—H3119.5C13—C12—H12B110.4
C2—C3—H3119.5H12A—C12—H12B108.6
C3—C4—C5120.49 (12)C12—C13—H13A109.5
C3—C4—H4119.8C12—C13—H13B109.5
C5—C4—H4119.8H13A—C13—H13B109.5
C4—C5—C6118.90 (11)C12—C13—H13C109.5
C4—C5—C8119.80 (11)H13A—C13—H13C109.5
C6—C5—C8121.30 (11)H13B—C13—H13C109.5
C9—N2—N3—C81.76 (13)C4—C5—C8—N1−6.63 (18)
C7—C2—C3—C4−0.71 (19)C6—C5—C8—N1173.24 (11)
C1—C2—C3—C4179.27 (12)C8—N1—C9—N20.94 (14)
C2—C3—C4—C50.84 (19)C8—N1—C9—N4−175.31 (11)
C3—C4—C5—C6−0.36 (19)N3—N2—C9—N1−1.78 (15)
C3—C4—C5—C8179.52 (11)N3—N2—C9—N4174.14 (12)
C4—C5—C6—C7−0.23 (19)C10—N4—C9—N1−171.44 (12)
C8—C5—C6—C7179.89 (11)C10—N4—C9—N213.0 (2)
C5—C6—C7—C20.36 (19)C9—N4—C10—N5−173.84 (12)
C3—C2—C7—C60.11 (19)C9—N4—C10—S16.13 (19)
C1—C2—C7—C6−179.87 (12)C11—N5—C10—N47.69 (18)
N2—N3—C8—N1−1.24 (14)C11—N5—C10—S1−172.28 (10)
N2—N3—C8—C5179.33 (11)C12—O2—C11—O15.70 (18)
C9—N1—C8—N30.24 (14)C12—O2—C11—N5−174.54 (10)
C9—N1—C8—C5179.68 (11)C10—N5—C11—O1−12.6 (2)
C4—C5—C8—N3172.75 (12)C10—N5—C11—O2167.62 (11)
C6—C5—C8—N3−7.38 (19)C11—O2—C12—C13−174.72 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.865 (19)2.316 (19)2.9719 (15)132.8 (16)
N2—H2N···S10.865 (19)2.660 (19)3.1116 (11)113.8 (15)
N4—H4N···O10.830 (19)1.929 (18)2.6274 (14)141.2 (17)
N5—H5N···S1ii0.856 (18)2.576 (19)3.4119 (11)165.7 (16)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2249).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  • Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem.76, 1471–1486.
  • Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett.50, 2124–2128.
  • Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126. [PMC free article] [PubMed]
  • Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125. [PMC free article] [PubMed]
  • Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425. [PMC free article] [PubMed]
  • Huang, B., Kung, P.-P., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1249. [PMC free article] [PubMed]
  • Lin, Q., Wei, T. B. & Zhang, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem.182, 863–871.
  • Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o580–o582.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon Relat. Elem.181, 745–750.
  • Zhang, Y.-M., Wei, T.-B., Xian, L., Lin, Q. & Yu, K.-B. (2003). Acta Cryst. E59, o905–o906.
  • Zhang, B., Xian, L. & Xiang, X. M. (2007). Z. Kristallogr. New Cryst. Struct.222, 447–448.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography