PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m259–m260.
Published online 2010 February 6. doi:  10.1107/S160053681000406X
PMCID: PMC2983702

Poly[(μ2-4,4′-bipyridine)(μ2-3,5-dicarboxybenzenesulfonato)silver(I)]

Abstract

In the title compound, [Ag(C8H5O7S)(C10H8N2)]n, the Ag atom is tetra­coordinated by two 4,4′-bipydidine (4,4′-bipy) N atoms and two monodentate sulfonate O atoms of the 5-sulfoisophthalic acid (H3 sip) ligands. Adjacent Ag atoms are bonded through four sulfonate O atoms, forming a dinuclear unit with an Ag(...)Ag separation of 3.384 (5) Å; they are further linked together by the 4,4′-bipy lignds into a chain. Classical inter­molecular O—H(...)O and non-classical intra­molecular C—H(...)O hydrogen bonds are also observed in the two-dimensional supra­molecuar structure.

Related literature

For general background to the design and construction of coordination polymers using multifunctional ligands, see: James (2003 [triangle]); Kawando & Fujita (2007 [triangle]); Liu et al. (2007 [triangle], 2008 [triangle]). For related structures, see: Liu & Xu (2005 [triangle], 2006 [triangle]); Lu et al. (2007 [triangle]). For the synthesis of related compounds, see: Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m259-scheme1.jpg

Experimental

Crystal data

  • [Ag(C8H5O7S)(C10H8N2)]
  • M r = 509.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m259-efi1.jpg
  • a = 7.9424 (16) Å
  • b = 9.970 (2) Å
  • c = 11.650 (2) Å
  • α = 83.38 (3)°
  • β = 87.36 (3)°
  • γ = 78.67 (3)°
  • V = 898.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 295 K
  • 0.52 × 0.34 × 0.13 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.615, T max = 0.831
  • 7152 measured reflections
  • 3156 independent reflections
  • 2350 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.189
  • S = 1.06
  • 3156 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.97 e Å−3
  • Δρmin = −1.43 e Å−3

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000406X/rk2187sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000406X/rk2187Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Jiangxi Provincial Educational Foundation (No. 20060237), the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry

supplementary crystallographic information

Comment

The design and construction of coordination polymers from multifunctional ligands with metal ions is one of the most active areas of materials research. The inceasing interest in these materials is stimulated by their intriguing structural diversities and potential applications such as catalysis, molecular magnets and adsorption (James, 2003; Kawando et al., 2007; Liu et al., 2007 and 2008).

As a multidentate O-donor organic aromatic polycarboxylate ligand, 5-sulfoisophthalic acid monosodium salt (NaH2sip) has been used a good organic ligand 'spacer' to obtain many metal-organic complexes (Liu & Xu, 2005 and 2006; Lu et al., 2007; Wang et al., 2008). In this work, with the introduction of a rigid linear ligand, 4,4'-bipy, a novel 1-D organic-inorganic hybrid, Ag(H2sip)(bipy)(I) (H3sip = 5-sulfoisophthalic acid and bipy = 4,4'-bipydidine), has been obtained through hydrothermal self-assembly.

As depicted in Fig. 1, each asymmetric unit in compound I contains one Ag ion, one H2sip and one 4,4'-bipy ligands. The Ag1 ion is tetra-coordinated by two 4,4'-bipy nitrogen atoms with Ag—N distances being 2.194 (39) and 2.184 (40)Å, and two monodentate sulfonate oxygen atom with Ag—O bond lengths of 2.653 (27) and 2.621 (9)Å. The adjacent two Ag atoms are bonded through two oxygen atoms (O1 and O3) from one sulfonate group and its symmtery-related atoms to form a dinuclear unit with the Ag1···Ag1 seperation of 3.384 (5)Å. Such dinuclear units are further linked together by the linkage of 4,4'-bipy to construct 1-D chain-like, as shown in Fig. 2.

In compound I,each 4,4'-bipy ligand bridges two Ag1 ions to yield a 1-D chain along the a axis. While each H2sip- ligand acts as mono-armed ligand using its bidentate sulfonate group, with remaining two carboxylate group uncoordinated.

In the crystal structure of the compound I, classical inter-molecular O—H···O and non-classical intra-molecular C—H···O hydrogen bonds are observed, which link the H2sip-and 4,4'-bipy molecules into a two-dimensional H-bonded network and stabilize the crystal packing.

Experimental

AgNO3 (0.086 g, 0.50 mmol) and NaH2sip (0.133 g, 0.50 mmol) were dissolved in 10 mL of distilled water by vigorous stirring. 4,4'-bipy (0.078 g, 0.50 mmol) was added to the mixture and stirred for 30 min. The resulting solution was sealed in a teflon-lined stainless autoclave and heated at 433 K for 4 days under autogenous pressure and then cooled to room temperature during 18 h. Yellow block crystals of I suitable for X-ray analysis were collected in 59% yield (based on silver).

Refinement

All H atoms bound to carbon were refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). Two hydroxy H atoms were located in a difference map and refined with O—H distance restraints of 0.82Å and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of the structure of title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
View of the 1-D chain in the crystal structure of title compound.

Crystal data

[Ag(C8H5O7S)(C10H8N2)]Z = 2
Mr = 509.24F(000) = 508
Triclinic, P1Dx = 1.883 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9424 (16) ÅCell parameters from 7152 reflections
b = 9.970 (2) Åθ = 3.0–25.0°
c = 11.650 (2) ŵ = 1.29 mm1
α = 83.38 (3)°T = 295 K
β = 87.36 (3)°Block, yellow
γ = 78.67 (3)°0.52 × 0.34 × 0.13 mm
V = 898.3 (3) Å3

Data collection

Siemens SMART CCD area-detector diffractometer3156 independent reflections
Radiation source: fine-focus sealed tube2350 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.615, Tmax = 0.831k = −11→11
7152 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.189w = 1/[σ2(Fo2) + (0.0986P)2 + 4.7322P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3156 reflectionsΔρmax = 0.97 e Å3
263 parametersΔρmin = −1.43 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)

Special details

Geometry. Alls.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.65733 (8)1.58243 (6)0.94443 (6)0.0538 (3)
S10.3909 (2)1.50090 (19)0.72770 (16)0.0418 (5)
N1−0.1357 (8)2.4038 (6)0.9399 (6)0.0446 (15)
N20.4706 (8)1.7746 (6)0.9457 (6)0.0467 (15)
C1−0.0690 (10)2.3342 (8)1.0376 (7)0.050 (2)
H1A−0.10672.36861.10720.060*
C20.0521 (10)2.2150 (7)1.0411 (7)0.0442 (18)
H2A0.09572.17231.11160.053*
C3−0.0763 (10)2.3507 (8)0.8420 (7)0.0492 (19)
H3A−0.11862.39690.77220.059*
C40.0425 (10)2.2327 (8)0.8396 (7)0.0433 (17)
H4A0.07942.20150.76880.052*
C50.2986 (9)1.9505 (8)1.0438 (7)0.0432 (17)
H5A0.26171.98321.11410.052*
C60.4124 (10)1.8288 (7)1.0428 (7)0.0423 (17)
H6A0.45131.78131.11310.051*
C70.2962 (11)1.9698 (8)0.8416 (7)0.051 (2)
H7A0.25992.01590.77040.061*
C80.4094 (12)1.8445 (8)0.8457 (7)0.054 (2)
H8A0.44451.80740.77690.065*
C90.1099 (9)2.1579 (7)0.9401 (6)0.0366 (15)
C100.2368 (8)2.0268 (7)0.9412 (6)0.0343 (15)
C110.4218 (9)1.3809 (7)0.6227 (6)0.0406 (16)
C120.5797 (9)1.2933 (7)0.6153 (6)0.0409 (17)
H12A0.66811.29900.66300.049*
C130.6045 (9)1.1976 (8)0.5365 (6)0.0415 (17)
C140.4729 (10)1.1858 (8)0.4675 (7)0.0443 (17)
H14A0.48941.11820.41710.053*
C150.3146 (9)1.2759 (8)0.4736 (6)0.0420 (17)
C160.2894 (9)1.3741 (8)0.5512 (6)0.0446 (18)
H16A0.18471.43480.55530.054*
C170.7761 (10)1.1076 (8)0.5217 (7)0.0471 (19)
C180.1776 (10)1.2684 (8)0.3903 (7)0.0461 (18)
O10.3287 (9)1.4280 (6)0.8299 (5)0.0643 (17)
O20.2644 (7)1.6189 (5)0.6839 (5)0.0522 (14)
O30.5564 (7)1.5339 (7)0.7414 (6)0.0626 (17)
O40.8908 (7)1.1182 (7)0.5940 (6)0.071 (2)
H4B0.98251.06910.57820.106*
O50.8050 (7)1.0323 (6)0.4427 (5)0.0567 (15)
O60.0381 (8)1.3629 (8)0.4059 (7)0.083 (2)
H6B−0.04091.34790.36950.125*
O70.1923 (8)1.1889 (7)0.3209 (6)0.0678 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0480 (4)0.0396 (4)0.0663 (5)0.0174 (3)−0.0110 (3)−0.0155 (3)
S10.0382 (10)0.0395 (10)0.0434 (10)0.0099 (8)−0.0101 (8)−0.0122 (8)
N10.033 (3)0.039 (3)0.058 (4)0.002 (3)−0.004 (3)−0.005 (3)
N20.041 (3)0.040 (3)0.054 (4)0.008 (3)−0.007 (3)−0.009 (3)
C10.046 (4)0.048 (4)0.054 (5)0.008 (4)−0.010 (4)−0.025 (4)
C20.049 (4)0.028 (3)0.053 (4)0.007 (3)−0.017 (4)−0.009 (3)
C30.041 (4)0.048 (4)0.049 (5)0.013 (4)−0.006 (3)−0.004 (4)
C40.041 (4)0.043 (4)0.042 (4)0.004 (3)0.002 (3)−0.009 (3)
C50.038 (4)0.044 (4)0.042 (4)0.009 (3)−0.001 (3)−0.009 (3)
C60.045 (4)0.035 (4)0.042 (4)0.006 (3)−0.004 (3)−0.008 (3)
C70.067 (5)0.038 (4)0.037 (4)0.019 (4)−0.009 (4)−0.011 (3)
C80.064 (5)0.046 (4)0.049 (5)0.014 (4)−0.012 (4)−0.023 (4)
C90.031 (3)0.032 (3)0.044 (4)0.005 (3)−0.006 (3)−0.009 (3)
C100.030 (3)0.029 (3)0.043 (4)0.000 (3)−0.004 (3)−0.009 (3)
C110.037 (4)0.038 (4)0.042 (4)0.003 (3)−0.007 (3)0.000 (3)
C120.034 (4)0.044 (4)0.042 (4)0.008 (3)−0.008 (3)−0.015 (3)
C130.032 (4)0.045 (4)0.041 (4)0.007 (3)−0.003 (3)−0.003 (3)
C140.043 (4)0.040 (4)0.048 (4)0.003 (3)−0.006 (3)−0.010 (3)
C150.038 (4)0.047 (4)0.038 (4)0.005 (3)−0.009 (3)−0.013 (3)
C160.032 (4)0.051 (4)0.043 (4)0.011 (3)0.000 (3)−0.002 (3)
C170.040 (4)0.045 (4)0.051 (4)0.008 (3)−0.012 (3)−0.008 (4)
C180.043 (4)0.045 (4)0.050 (4)0.000 (3)−0.017 (3)−0.012 (4)
O10.090 (5)0.049 (3)0.046 (3)0.005 (3)0.011 (3)−0.009 (3)
O20.049 (3)0.042 (3)0.061 (3)0.011 (2)−0.017 (3)−0.010 (3)
O30.044 (3)0.070 (4)0.077 (4)0.006 (3)−0.019 (3)−0.041 (3)
O40.039 (3)0.083 (5)0.087 (5)0.021 (3)−0.019 (3)−0.047 (4)
O50.044 (3)0.060 (3)0.064 (4)0.012 (3)−0.014 (3)−0.030 (3)
O60.048 (4)0.101 (5)0.099 (5)0.027 (4)−0.031 (4)−0.056 (4)
O70.059 (4)0.075 (4)0.068 (4)0.011 (3)−0.023 (3)−0.038 (4)

Geometric parameters (Å, °)

Ag1—N1i2.178 (6)C6—H6A0.9300
Ag1—N22.181 (6)C7—C101.374 (10)
Ag1—O32.658 (7)C7—C81.385 (10)
Ag1—O1ii2.626 (6)C7—H7A0.9300
S1—O31.436 (6)C8—H8A0.9300
S1—O11.441 (6)C9—C101.485 (9)
S1—O21.449 (5)C11—C121.386 (10)
S1—C111.784 (8)C11—C161.387 (10)
N1—C11.336 (10)C12—C131.379 (10)
N1—C31.340 (10)C12—H12A0.9300
N1—Ag1iii2.178 (6)C13—C141.379 (10)
N2—C61.334 (10)C13—C171.492 (10)
N2—C81.346 (10)C14—C151.399 (10)
C1—C21.372 (10)C14—H14A0.9300
C1—H1A0.9300C15—C161.389 (10)
C2—C91.385 (10)C15—C181.508 (10)
C2—H2A0.9300C16—H16A0.9300
C3—C41.358 (10)C17—O51.239 (9)
C3—H3A0.9300C17—O41.295 (9)
C4—C91.383 (10)C18—O71.183 (9)
C4—H4A0.9300C18—O61.326 (10)
C5—C61.364 (10)O4—H4B0.8200
C5—C101.396 (10)O6—H6B0.8200
C5—H5A0.9300
O3—Ag1—N292.9 (2)C8—C7—H7A119.5
O3—Ag1—N1i89.0 (2)N2—C8—C7122.4 (7)
O3—Ag1—O1ii158.2 (3)N2—C8—H8A118.8
N2—Ag1—N1i174.0 (2)C7—C8—H8A118.8
N2—Ag1—O1ii88.5 (2)C4—C9—C2115.1 (6)
O3—S1—O1113.3 (4)C4—C9—C10123.1 (7)
O3—S1—O2113.0 (4)C2—C9—C10121.8 (6)
O1—S1—O2111.8 (4)C7—C10—C5115.5 (6)
O3—S1—C11105.9 (3)C7—C10—C9122.3 (6)
O1—S1—C11104.6 (4)C5—C10—C9122.1 (6)
O2—S1—C11107.6 (3)C12—C11—C16120.8 (7)
C1—N1—C3115.9 (6)C12—C11—S1118.6 (5)
C1—N1—Ag1iii120.9 (5)C16—C11—S1120.6 (5)
C3—N1—Ag1iii123.1 (5)C13—C12—C11119.4 (7)
C6—N2—C8117.0 (6)C13—C12—H12A120.3
C6—N2—Ag1122.8 (5)C11—C12—H12A120.3
C8—N2—Ag1120.2 (5)C14—C13—C12120.8 (7)
N1—C1—C2123.7 (7)C14—C13—C17118.6 (7)
N1—C1—H1A118.2C12—C13—C17120.6 (7)
C2—C1—H1A118.2C13—C14—C15119.7 (7)
C1—C2—C9120.4 (7)C13—C14—H14A120.1
C1—C2—H2A119.8C15—C14—H14A120.1
C9—C2—H2A119.8C16—C15—C14119.8 (7)
N1—C3—C4123.3 (7)C16—C15—C18121.5 (7)
N1—C3—H3A118.4C14—C15—C18118.6 (7)
C4—C3—H3A118.4C11—C16—C15119.4 (7)
C3—C4—C9121.5 (7)C11—C16—H16A120.3
C3—C4—H4A119.3C15—C16—H16A120.3
C9—C4—H4A119.3O5—C17—O4123.6 (7)
C6—C5—C10121.1 (7)O5—C17—C13121.1 (7)
C6—C5—H5A119.5O4—C17—C13115.3 (7)
C10—C5—H5A119.5O7—C18—O6124.6 (7)
N2—C6—C5123.0 (7)O7—C18—C15124.7 (7)
N2—C6—H6A118.5O6—C18—C15110.7 (6)
C5—C6—H6A118.5C17—O4—H4B109.5
C10—C7—C8120.9 (7)C18—O6—H6B109.5
C10—C7—H7A119.5

Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, −y+3, −z+2; (iii) x−1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O5iv0.821.812.627 (8)173
O6—H6B···O2v0.821.862.630 (8)155
C1—H1A···O1vi0.932.563.299 (10)136
C6—H6A···O1ii0.932.493.212 (9)135
C12—H12A···O30.932.592.926 (9)102
C16—H16A···O60.932.392.703 (10)100
C16—H16A···O6v0.932.483.376 (9)162

Symmetry codes: (iv) −x+2, −y+2, −z+1; (v) −x, −y+3, −z+1; (vi) −x, −y+4, −z+2; (ii) −x+1, −y+3, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2187).

References

  • James, S. L. (2003). Chem. Soc. Rev. 32, 276–288. [PubMed]
  • Kawando, M. & Fujita, M. (2007). Coord. Chem. Rev.251, 2592–2605.
  • Liu, Q. Y., Wang, Y. L., Zhao, J. & Xu, L. (2008). Eur. J. Inorg. Chem. pp. 1157–1163.
  • Liu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87–89.
  • Liu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620–1628.
  • Liu, Q. Y., Yuan, D. Q. & Xu, L. (2007). Cryst. Growth Des.7, 1832–1843.
  • Lu, J., Li, F., Yuan, D. Q. & Cao, R. (2007). Polyhedron, 26, 2979–2986.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, Y. L., Liu, Q. Y. & Xu, L. (2008). CrystEngComm, 10, 1667–1673.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography