PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o541.
Published online 2010 February 6. doi:  10.1107/S1600536810004034
PMCID: PMC2983693

N-(p-Tolyl­sulfon­yl)-l-asparagine

Abstract

In the title compound, C11H14N2O5S, the amide O atom acts as a hydrogen-bond acceptor from a carboxyl­ate O atom and a secondary amino N atom. In addition, one of the sulfonyl O atoms and the carbonyl O atom of the carboxyl group also form hydrogen bonds with the primary amido N atom. These intermolecular hydrogen-bonding inter­actions give rise to a layer structure, with the layers parallel to the ac plane.

Related literature

For the anti­bacterial and anti­cancer activity of l-asparagines, Wagastuma et al. (1983 [triangle]); Murphy & Stubbins (1980 [triangle]). For a related compound, see Arshad et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o541-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O5S
  • M r = 286.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o541-efi1.jpg
  • a = 8.7566 (6) Å
  • b = 22.900 (2) Å
  • c = 6.9692 (7) Å
  • V = 1397.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 296 K
  • 0.37 × 0.11 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.914, T max = 0.983
  • 8388 measured reflections
  • 3206 independent reflections
  • 2451 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.099
  • S = 1.02
  • 3206 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1338 Friedel pairs
  • Flack parameter: −0.03 (8)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004034/bv2133sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004034/bv2133Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Higher Education Commission of Pakistan, the GC University, Lahore-Pakistan, and the University of Malaya, Malaysia for supporting this study.

supplementary crystallographic information

Comment

L-asparagine, amino acid derivatives of amino penicillin have been synthesized and reported as active antibacterial agents (Wagastuma et al., 1983). In another study, different derivatives of asparagine have been synthesized and evaluated for their anticancer activities (Murphy & Stubbins et al., 1980). Our group also involved in the synthesis of sulfonamide derivatives of different amino acids (Arshad et al., 2009). In this sulfonamide derivative of L-asparagine (Fig. 1), the tetrahedral geometries at S1, C8 and C10 resulted in a twisted molecule in order to reduce steric hindrance. The molecules are linked together by hydrogen bonding between the amido oxygen O5 with the hydrogen atoms of the carboxylate oxygen O4 and the secondary amino nitrogen N1. In addition, one of the sulfonyl oxygen O2 and the carbonyl oxygen O3 also form hydrogen bonds with the primary amido nitrogen N2. These hydrogen bonding interactions produce a layer structure, with the layers propagated parallel to the ac plane (Fig. 2).

Experimental

Asparagine (.25 g, 1.89 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1 M Na2CO3 solution. 4-Toluenesulfonyl chloride (0.361 g, 1.89 mmol) was suspended in the above solution and stirred at room temperature until all the 4-toluenesulfonyl chloride was consumed. The reaction was completed when the suspension turned to a clear solution. Upon completion of the reaction, the pH was adjusted 1–2, using 1 M HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized from methanol to yield white crystals.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.98 Å; O–H 0.82 Å, N–H 0.86 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times U~eq~(C).

Figures

Fig. 1.
The molecular structure of N-(4-toluenesulfonyl)-L-asparagine showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Crystal packing of the unit cell showing the hydrogen bonding interactions in the molecule.

Crystal data

C11H14N2O5SF(000) = 600
Mr = 286.30Dx = 1.361 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2600 reflections
a = 8.7566 (6) Åθ = 2.5–24°
b = 22.900 (2) ŵ = 0.25 mm1
c = 6.9692 (7) ÅT = 296 K
V = 1397.5 (2) Å3Block, white
Z = 40.37 × 0.11 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3206 independent reflections
Radiation source: fine-focus sealed tube2451 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.914, Tmax = 0.983k = −26→29
8388 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0521P)2 + ] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3206 reflectionsΔρmax = 0.18 e Å3
174 parametersΔρmin = −0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1328 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.95716 (6)0.62903 (3)0.10823 (10)0.04939 (18)
O10.9573 (2)0.61117 (9)−0.0862 (3)0.0778 (6)
O21.09832 (17)0.64258 (8)0.2020 (3)0.0636 (5)
O30.62170 (16)0.68014 (8)0.3996 (2)0.0554 (4)
O40.76473 (19)0.73119 (9)0.6017 (2)0.0629 (5)
H40.70190.72000.68080.094*
O51.08999 (14)0.79700 (8)0.1128 (2)0.0493 (4)
N10.85411 (17)0.68699 (8)0.1208 (3)0.0392 (4)
H10.79660.69600.02530.047*
N20.90525 (19)0.82712 (9)−0.0810 (3)0.0522 (5)
H2A0.97030.8367−0.16800.063*
H2B0.80930.8323−0.10080.063*
C10.8685 (3)0.57415 (11)0.2442 (4)0.0490 (6)
C20.8893 (3)0.57211 (12)0.4400 (4)0.0619 (7)
H20.95110.59940.50130.074*
C30.8171 (4)0.52899 (16)0.5433 (5)0.0807 (10)
H30.83030.52770.67570.097*
C40.7259 (4)0.48771 (14)0.4570 (6)0.0796 (10)
C50.7061 (4)0.49096 (16)0.2613 (7)0.0896 (11)
H50.64420.46370.20020.107*
C60.7762 (3)0.53379 (13)0.1549 (5)0.0712 (9)
H60.76130.53550.02290.085*
C70.6559 (5)0.43887 (16)0.5732 (7)0.1317 (18)
H7A0.59550.41450.49080.198*
H7B0.59210.45510.67190.198*
H7C0.73550.41600.63090.198*
C80.8551 (2)0.72435 (9)0.2877 (3)0.0357 (5)
H80.95510.72080.34970.043*
C90.7331 (2)0.70850 (10)0.4343 (3)0.0375 (5)
C100.8332 (2)0.78799 (10)0.2275 (3)0.0416 (5)
H10A0.73190.79310.17350.050*
H10B0.84200.81310.33890.050*
C110.9521 (2)0.80490 (9)0.0805 (3)0.0362 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0400 (3)0.0489 (3)0.0592 (4)0.0011 (3)0.0150 (3)−0.0021 (3)
O10.0992 (14)0.0717 (13)0.0624 (12)0.0039 (11)0.0320 (12)−0.0157 (11)
O20.0324 (8)0.0578 (11)0.1005 (15)0.0023 (7)0.0067 (8)0.0111 (11)
O30.0385 (8)0.0806 (12)0.0471 (9)−0.0149 (8)0.0005 (7)0.0108 (10)
O40.0571 (10)0.0946 (15)0.0369 (9)−0.0274 (9)0.0162 (8)−0.0073 (10)
O50.0301 (7)0.0789 (12)0.0388 (8)−0.0034 (7)−0.0020 (7)0.0164 (10)
N10.0368 (8)0.0467 (11)0.0342 (9)0.0025 (8)0.0010 (8)0.0005 (10)
N20.0325 (8)0.0808 (15)0.0432 (11)0.0045 (9)0.0011 (8)0.0199 (11)
C10.0413 (11)0.0409 (14)0.0646 (16)0.0019 (10)0.0084 (11)−0.0013 (13)
C20.0677 (16)0.0459 (16)0.072 (2)−0.0084 (13)−0.0039 (13)0.0062 (14)
C30.096 (2)0.067 (2)0.079 (2)−0.0022 (19)0.0075 (17)0.0203 (19)
C40.074 (2)0.046 (2)0.119 (3)−0.0002 (16)0.0206 (19)0.017 (2)
C50.076 (2)0.059 (2)0.134 (3)−0.0230 (16)0.006 (2)−0.010 (2)
C60.0749 (18)0.0609 (19)0.078 (2)−0.0156 (16)0.0060 (15)−0.0088 (17)
C70.127 (3)0.074 (3)0.195 (5)−0.013 (2)0.033 (4)0.059 (3)
C80.0277 (9)0.0456 (13)0.0338 (11)−0.0016 (9)0.0021 (8)0.0037 (10)
C90.0315 (9)0.0479 (14)0.0332 (11)0.0011 (9)0.0000 (8)0.0078 (10)
C100.0390 (11)0.0457 (14)0.0400 (12)0.0033 (10)0.0086 (9)0.0032 (11)
C110.0339 (9)0.0393 (11)0.0353 (11)−0.0010 (9)0.0012 (9)0.0021 (10)

Geometric parameters (Å, °)

S1—O11.416 (2)C3—C41.376 (5)
S1—O21.4322 (18)C3—H30.9300
S1—N11.6074 (18)C4—C51.377 (5)
S1—C11.755 (3)C4—C71.511 (4)
O3—C91.197 (2)C5—C61.374 (5)
O4—C91.307 (2)C5—H50.9300
O4—H40.8200C6—H60.9300
O5—C111.242 (2)C7—H7A0.9600
N1—C81.444 (3)C7—H7B0.9600
N1—H10.8600C7—H7C0.9600
N2—C111.302 (3)C8—C91.522 (3)
N2—H2A0.8600C8—C101.529 (3)
N2—H2B0.8600C8—H80.9800
C1—C61.376 (4)C10—C111.511 (3)
C1—C21.378 (4)C10—H10A0.9700
C2—C31.376 (4)C10—H10B0.9700
C2—H20.9300
O1—S1—O2119.92 (11)C5—C6—C1119.8 (3)
O1—S1—N1106.93 (11)C5—C6—H6120.1
O2—S1—N1106.30 (10)C1—C6—H6120.1
O1—S1—C1108.07 (13)C4—C7—H7A109.5
O2—S1—C1106.91 (12)C4—C7—H7B109.5
N1—S1—C1108.27 (10)H7A—C7—H7B109.5
C9—O4—H4109.5C4—C7—H7C109.5
C8—N1—S1122.00 (14)H7A—C7—H7C109.5
C8—N1—H1119.0H7B—C7—H7C109.5
S1—N1—H1119.0N1—C8—C9113.27 (17)
C11—N2—H2A120.0N1—C8—C10110.06 (17)
C11—N2—H2B120.0C9—C8—C10108.87 (17)
H2A—N2—H2B120.0N1—C8—H8108.2
C6—C1—C2120.2 (3)C9—C8—H8108.2
C6—C1—S1119.8 (2)C10—C8—H8108.2
C2—C1—S1120.0 (2)O3—C9—O4124.65 (19)
C3—C2—C1118.8 (3)O3—C9—C8124.49 (19)
C3—C2—H2120.6O4—C9—C8110.84 (17)
C1—C2—H2120.6C11—C10—C8110.12 (17)
C4—C3—C2122.1 (3)C11—C10—H10A109.6
C4—C3—H3119.0C8—C10—H10A109.6
C2—C3—H3119.0C11—C10—H10B109.6
C3—C4—C5118.0 (3)C8—C10—H10B109.6
C3—C4—C7120.7 (4)H10A—C10—H10B108.2
C5—C4—C7121.3 (4)O5—C11—N2121.34 (19)
C6—C5—C4121.1 (3)O5—C11—C10120.65 (19)
C6—C5—H5119.4N2—C11—C10118.00 (17)
C4—C5—H5119.4
O1—S1—N1—C8−166.24 (16)C7—C4—C5—C6−176.8 (3)
O2—S1—N1—C8−37.03 (17)C4—C5—C6—C10.3 (5)
C1—S1—N1—C877.52 (17)C2—C1—C6—C5−0.7 (4)
O1—S1—C1—C6−19.0 (3)S1—C1—C6—C5−179.7 (3)
O2—S1—C1—C6−149.3 (2)S1—N1—C8—C9−91.79 (18)
N1—S1—C1—C696.5 (2)S1—N1—C8—C10146.07 (15)
O1—S1—C1—C2162.1 (2)N1—C8—C9—O3−19.7 (3)
O2—S1—C1—C231.7 (3)C10—C8—C9—O3103.1 (2)
N1—S1—C1—C2−82.4 (2)N1—C8—C9—O4161.76 (19)
C6—C1—C2—C30.3 (4)C10—C8—C9—O4−75.4 (2)
S1—C1—C2—C3179.3 (2)N1—C8—C10—C11−54.8 (2)
C1—C2—C3—C40.5 (5)C9—C8—C10—C11−179.54 (17)
C2—C3—C4—C5−1.0 (5)C8—C10—C11—O5−53.0 (3)
C2—C3—C4—C7176.4 (3)C8—C10—C11—N2126.1 (2)
C3—C4—C5—C60.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.782.592 (2)168
N1—H1···O5ii0.862.062.852 (2)154
N2—H2A···O3iii0.862.122.924 (2)155
N2—H2B···O2ii0.862.062.901 (2)166

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z; (iii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2133).

References

  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Murphy, M. J. & Stubbins, J. F. (1980). J. Pharm Sci.69, 553–555. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wagastuma, M., Seto, M., Miayagshima, T., Kawazu, M., Yamaguchi, T. & Ohshima, S. (1983). J. Antibiot. (Tokyo), 36, 147–154. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography