PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o671–o672.
Published online 2010 February 20. doi:  10.1107/S1600536810004794
PMCID: PMC2983692

Bis{2-[1-(8-hydroxy-2-quinolylmethyl)-1H-benzimidazol-2-yl]quinolin-8-ol} toluene solvate

Abstract

Crystals of the title compound, 2C26H18N4O2·C7H8, were obtained from the reaction of 8-hydroxy­quinoline with 1,2-phenyl­enediamine in methanol and recrystallized from toluene. The compound contains three essentially planar ring systems: the benzimidazole ring (r.m.s. deviation = 0.039 Å) and two 8-hydroxy­quinoline rings (r.m.s. deviations of 0.0056 Å in both rings). The benzimidazole ring and one 8-hydroxy­quinoline ring are almost co-planar, forming a dihdral angle of 3.1 (2)°. The other 8-hydroxy­quinoline ring is almost perpendicular to the benzimidazole plane with a dihedral angle of 86.2 (2)°. Intra­molecular O—H(...)N contacts are present. The crystal structure is stabilized by inter­molecular O—H(...)N inter­actions. The complete toluene molecule is generated by crystallographic inversion symmetry; therefore its methyl group is disordered over two sites of equal occupancy.

Related literature

For the use of the reaction of o-phenyl­enediamine with excess aldehyde without an oxidant to produce a Shiff base compound containing two —N=CH— bonds, see: Chen & Martell (1987 [triangle]); Wang et al. (1994 [triangle]). Similar benzimidazole derivatives have been obtained, see: Dege et al. (2006 [triangle]); Yang et al. (2004 [triangle]). For the preparation of benzimidazole, see: Boufatah et al. (2004 [triangle]); Grimmet (1997 [triangle]); Kumar et al. (1981 [triangle]); Srivastava & Venkataramair (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o671-scheme1.jpg

Experimental

Crystal data

  • 2C26H18N4O2·C7H8
  • M r = 929.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o671-efi1.jpg
  • a = 8.014 (7) Å
  • b = 12.669 (11) Å
  • c = 12.727 (11) Å
  • α = 112.979 (10)°
  • β = 90.881 (11)°
  • γ = 100.966 (11)°
  • V = 1162.1 (17) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.975, T max = 0.987
  • 6333 measured reflections
  • 4077 independent reflections
  • 3049 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.156
  • S = 1.03
  • 4077 reflections
  • 329 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810004794/bv2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004794/bv2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20601018) and the Province Natural Science Foundation of Shanxi Province of China (grant No. 2009021006–3).

supplementary crystallographic information

Comment

In most cases, without oxidant, the reaction of o-phenylenediamine with excess aldehyde produces a Shiff-base compound containing two —N═CH— bonds (Chen et al.,1987; Wang et al.,1994). However, in our case, the reaction of o-phenylenediamine with 3 equivalents of 8-hydroxyquinoline-2-aldehyde did not form the desired compound. Instead, the reaction produced a novel 2-substituted benzimidazole. Similar benzimidazole derivatives were also obtained by Dege and Yang (Dege et al., 2006; Yang et al., 2004). Usually, one of the general routes for synthesis of benzimidazole involves the reaction of a carboxylic acid with o-phenylenediamine in the presence of a strong acid (Grimmet et al., 1997; Boufatah et al., 2004). Another typical procedure involves heating o-phenylenediamine with an aldehyde in the presence of oxidant, such as Pb(OAc)4 (Kumar et al., 1981), BaMnO4 (Srivastava et al., 1988).

The molecular structure and a packing diagram of the title compound are illustrated in Figs 1 and 2, respectively. Selected geometric parameters are listed in Table 1.The compound contains 3 planar rings. One is the benzimidazole ring (N2, N3, C10—C16); the others are the 8-hydroxyquinoline rings. The 8-hydroxyquinoline ring [A(N1,O1,C1—C9)] attached to C10, is almost coplanar with the benzimidazole ring (with a dihedral angle of 3.1 (2)°). The other 8-hydroxyquinoline group [B(N4,O2,C18—C26)], was attached to the C17 methylene group almost perpendicular to the benzimidazole plane (with a dihedral angle of 93.8 (2)°). Two 8-hydroxyquinoline rings (A and B) form a dihedral angle of 96.5 (2)°. The C17—C18,C17—N3 and N2—C10 bond distances are 1.513 (3), 1.462 (3) and 1.327 (3) Å, which are similar to the corresponding bond lengths in 1-(thiophen-2-ylmethyl)-2-(thiophen-2-yl)-1H-benzimidazole (1.501 (3), 1.452 (3) and 1.315 (3) Å) (Dege et al., 2006). There is a strong intermolecular between O2—H2···N2(x + 1,y,z), with a H2···N2 distance of 2.55 Å (Figure 2, Table 2).

Experimental

A solution of 1,2-diaminobenzene (0.001 mol) in absolute methanol (20 ml) was added in small portions to a solution of 8-hydroxyquinoline-2-aldehyde (0.003 mol) in absolute methanol (30 ml). The reaction mixture was maintained at 348 K for 2 h,and was monitored by TLC. The resulting precipitation was washed with methanol, dried and recrystallized from toluene. 1H NMR(d6-DMSO):9.46(s,1H),9.33(s,1H),8.56(d,1H),8.47(d,1H),8.15(d,1H), 7.82–7.85(m,2H),7.42–7.48(m,2H),7.08–7.40(m,7H),6.73(s,2H).

Refinement

Toluene molecule is located at a symmetrical center, so 4-H of toluene is not present. H atoms attached to C atoms were placed in geometrically idealized positions with Csp2—H = 0.93 Å and Csp3—H = 0.96 Å, and were constrained to ride on their parent atoms.

Figures

Fig. 1.
The structure of the title compound,with the atom-numbering scheme.Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The packing view of the title compound.

Crystal data

2C26H18N4O2·C7H8Z = 1
Mr = 929.02F(000) = 486
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.014 (7) ÅCell parameters from 2466 reflections
b = 12.669 (11) Åθ = 3.0–25.9°
c = 12.727 (11) ŵ = 0.09 mm1
α = 112.979 (10)°T = 295 K
β = 90.881 (11)°Block, yellow
γ = 100.966 (11)°0.30 × 0.20 × 0.15 mm
V = 1162.1 (17) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4077 independent reflections
Radiation source: fine-focus sealed tube3049 reflections with I > 2σ(I)
graphiteRint = 0.024
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→7
Tmin = 0.975, Tmax = 0.987k = −15→14
6333 measured reflectionsl = −12→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.156w = 1/[σ2(Fo2) + (0.0768P)2 + 0.2872P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4077 reflectionsΔρmax = 0.40 e Å3
329 parametersΔρmin = −0.32 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.5707 (3)0.12196 (18)−0.05782 (17)0.0455 (5)
C20.7346 (3)0.0952 (2)−0.0469 (2)0.0535 (6)
C30.7601 (3)−0.0148 (2)−0.1092 (2)0.0624 (6)
H30.8668−0.0316−0.10270.075*
C40.6260 (4)−0.1028 (2)−0.1830 (2)0.0676 (7)
H40.6453−0.1773−0.22480.081*
C50.4679 (3)−0.0808 (2)−0.1944 (2)0.0633 (6)
H50.3807−0.1402−0.24350.076*
C60.4366 (3)0.03220 (19)−0.13169 (18)0.0509 (5)
C70.2767 (3)0.0626 (2)−0.13557 (19)0.0556 (6)
H70.18330.0059−0.18050.067*
C80.2582 (3)0.17396 (19)−0.07426 (19)0.0524 (6)
H80.15320.1942−0.07740.063*
C90.4018 (2)0.25868 (18)−0.00545 (17)0.0434 (5)
C100.3807 (2)0.37994 (17)0.05742 (16)0.0421 (5)
C110.2623 (3)0.52959 (18)0.12008 (18)0.0462 (5)
C120.1518 (3)0.6075 (2)0.1430 (2)0.0554 (6)
H120.03940.58250.11000.066*
C130.2159 (3)0.7227 (2)0.2162 (2)0.0625 (6)
H130.14520.77630.23250.075*
C140.3845 (3)0.7607 (2)0.2665 (2)0.0652 (7)
H140.42280.83900.31600.078*
C150.4960 (3)0.6855 (2)0.2448 (2)0.0569 (6)
H150.60810.71120.27830.068*
C160.4318 (2)0.56921 (18)0.16998 (17)0.0441 (5)
C170.6860 (2)0.47670 (18)0.15656 (18)0.0437 (5)
H17A0.74970.55690.18110.052*
H17B0.73140.42930.08780.052*
C180.7154 (2)0.43377 (16)0.24939 (16)0.0411 (5)
C190.5972 (3)0.43317 (19)0.33017 (18)0.0511 (5)
H190.49350.45450.32490.061*
C200.6374 (3)0.4007 (2)0.41619 (19)0.0557 (6)
H200.56050.40040.47010.067*
C210.7938 (3)0.36783 (18)0.42466 (17)0.0481 (5)
C220.8471 (3)0.3341 (2)0.5118 (2)0.0632 (6)
H220.77760.33380.56950.076*
C231.0006 (4)0.3022 (2)0.5104 (2)0.0702 (7)
H231.03460.27990.56750.084*
C241.1081 (3)0.3024 (2)0.4245 (2)0.0680 (7)
H241.21230.28040.42520.082*
C251.0602 (3)0.3348 (2)0.3397 (2)0.0556 (6)
C260.9023 (2)0.36878 (17)0.33817 (17)0.0440 (5)
C270.6666 (8)0.9326 (7)0.5448 (6)0.109 (2)0.50
H27A0.63520.84840.51160.163*0.50
H27B0.59040.96350.51120.163*0.50
H27C0.65900.96100.62600.163*0.50
C280.8398 (8)0.9701 (3)0.5231 (4)0.1311 (17)
C290.8662 (8)0.9652 (4)0.4163 (4)0.151 (2)
H290.77530.94090.36010.181*
C301.0280 (8)0.9965 (4)0.3939 (4)0.141 (2)
H301.04930.99530.32190.169*
N10.5530 (2)0.23373 (15)0.00443 (14)0.0448 (4)
N20.2332 (2)0.41096 (15)0.05066 (15)0.0486 (5)
N30.5069 (2)0.47278 (14)0.12805 (14)0.0426 (4)
N40.8615 (2)0.40046 (14)0.25095 (14)0.0437 (4)
O10.8628 (2)0.17832 (16)0.02683 (16)0.0740 (5)
H10.82930.23940.05890.111*
O21.1662 (2)0.3371 (2)0.25782 (18)0.0811 (6)
H21.11740.35120.20930.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0529 (12)0.0487 (12)0.0422 (12)0.0166 (9)0.0120 (9)0.0232 (10)
C20.0539 (13)0.0595 (14)0.0556 (14)0.0219 (11)0.0143 (10)0.0271 (11)
C30.0682 (16)0.0667 (16)0.0672 (16)0.0343 (13)0.0272 (12)0.0325 (13)
C40.091 (2)0.0566 (15)0.0625 (16)0.0302 (14)0.0287 (14)0.0244 (12)
C50.0789 (17)0.0514 (14)0.0552 (14)0.0112 (12)0.0127 (12)0.0176 (11)
C60.0610 (14)0.0511 (13)0.0430 (12)0.0117 (10)0.0097 (10)0.0214 (10)
C70.0552 (13)0.0541 (14)0.0526 (13)0.0027 (10)−0.0015 (10)0.0204 (11)
C80.0441 (12)0.0589 (14)0.0560 (13)0.0092 (10)−0.0010 (10)0.0260 (11)
C90.0438 (11)0.0506 (12)0.0424 (11)0.0128 (9)0.0048 (8)0.0243 (9)
C100.0395 (11)0.0515 (12)0.0420 (11)0.0120 (9)0.0034 (8)0.0249 (9)
C110.0455 (11)0.0545 (13)0.0492 (12)0.0162 (9)0.0099 (9)0.0291 (10)
C120.0471 (12)0.0673 (15)0.0682 (15)0.0250 (11)0.0153 (10)0.0383 (13)
C130.0691 (16)0.0657 (16)0.0717 (16)0.0334 (13)0.0234 (12)0.0382 (13)
C140.0793 (17)0.0525 (14)0.0670 (16)0.0222 (12)0.0132 (13)0.0236 (12)
C150.0582 (14)0.0547 (14)0.0584 (14)0.0136 (11)0.0034 (11)0.0227 (11)
C160.0465 (11)0.0502 (12)0.0455 (12)0.0166 (9)0.0089 (9)0.0267 (10)
C170.0359 (10)0.0505 (12)0.0486 (12)0.0099 (8)0.0023 (8)0.0236 (9)
C180.0375 (10)0.0424 (11)0.0410 (11)0.0084 (8)0.0008 (8)0.0142 (9)
C190.0423 (11)0.0665 (14)0.0477 (13)0.0199 (10)0.0052 (9)0.0225 (11)
C200.0548 (13)0.0716 (15)0.0456 (13)0.0202 (11)0.0140 (10)0.0254 (11)
C210.0557 (13)0.0482 (12)0.0412 (12)0.0143 (10)0.0029 (9)0.0173 (9)
C220.0791 (17)0.0717 (16)0.0489 (14)0.0247 (13)0.0084 (12)0.0309 (12)
C230.0856 (19)0.0767 (17)0.0633 (16)0.0304 (14)−0.0019 (13)0.0381 (14)
C240.0625 (15)0.0780 (17)0.0804 (18)0.0291 (13)0.0023 (13)0.0431 (14)
C250.0489 (13)0.0634 (14)0.0669 (15)0.0196 (11)0.0063 (11)0.0357 (12)
C260.0437 (11)0.0418 (11)0.0466 (12)0.0084 (9)−0.0012 (9)0.0184 (9)
C270.126 (6)0.111 (6)0.093 (5)0.052 (5)0.008 (5)0.033 (4)
C280.243 (5)0.064 (2)0.083 (3)0.045 (3)−0.029 (3)0.0222 (18)
C290.262 (7)0.096 (3)0.094 (3)0.027 (4)−0.041 (4)0.044 (2)
C300.268 (7)0.085 (3)0.069 (3)0.036 (4)−0.027 (4)0.031 (2)
N10.0448 (10)0.0504 (10)0.0444 (10)0.0156 (8)0.0062 (7)0.0220 (8)
N20.0403 (9)0.0540 (11)0.0579 (11)0.0146 (8)0.0035 (8)0.0270 (9)
N30.0383 (9)0.0491 (10)0.0464 (10)0.0136 (7)0.0035 (7)0.0237 (8)
N40.0381 (9)0.0495 (10)0.0473 (10)0.0131 (7)0.0031 (7)0.0217 (8)
O10.0539 (10)0.0736 (12)0.0870 (13)0.0276 (9)0.0027 (9)0.0180 (10)
O20.0540 (10)0.1300 (17)0.1009 (15)0.0461 (11)0.0256 (10)0.0773 (13)

Geometric parameters (Å, °)

C1—N11.363 (3)C17—C181.513 (3)
C1—C61.415 (3)C17—H17A0.9700
C1—C21.435 (3)C17—H17B0.9700
C2—O11.354 (3)C18—N41.320 (3)
C2—C31.365 (3)C18—C191.410 (3)
C3—C41.406 (4)C19—C201.365 (3)
C3—H30.9300C19—H190.9300
C4—C51.365 (4)C20—C211.409 (3)
C4—H40.9300C20—H200.9300
C5—C61.414 (3)C21—C261.416 (3)
C5—H50.9300C21—C221.421 (3)
C6—C71.411 (3)C22—C231.365 (4)
C7—C81.358 (3)C22—H220.9300
C7—H70.9300C23—C241.403 (4)
C8—C91.418 (3)C23—H230.9300
C8—H80.9300C24—C251.369 (3)
C9—N11.325 (3)C24—H240.9300
C9—C101.474 (3)C25—O21.361 (3)
C10—N21.327 (3)C25—C261.414 (3)
C10—N31.381 (3)C26—N41.374 (3)
C11—N21.385 (3)C27—C281.4463 (15)
C11—C121.400 (3)C27—H27A0.9600
C11—C161.402 (3)C27—H27B0.9600
C12—C131.378 (4)C27—H27C0.9600
C12—H120.9300C28—C291.358 (6)
C13—C141.398 (4)C28—C30i1.365 (6)
C13—H130.9300C29—C301.351 (9)
C14—C151.381 (3)C29—H290.9300
C14—H140.9300C30—C28i1.365 (6)
C15—C161.394 (3)C30—H300.9300
C15—H150.9300O1—H10.8200
C16—N31.385 (3)O2—H20.8200
C17—N31.462 (3)
N1—C1—C6123.4 (2)C18—C17—H17B108.7
N1—C1—C2117.63 (19)H17A—C17—H17B107.6
C6—C1—C2119.0 (2)N4—C18—C19122.82 (19)
O1—C2—C3120.0 (2)N4—C18—C17115.06 (17)
O1—C2—C1120.0 (2)C19—C18—C17122.09 (18)
C3—C2—C1120.0 (2)C20—C19—C18118.8 (2)
C2—C3—C4120.4 (2)C20—C19—H19120.6
C2—C3—H3119.8C18—C19—H19120.6
C4—C3—H3119.8C19—C20—C21121.0 (2)
C5—C4—C3121.2 (2)C19—C20—H20119.5
C5—C4—H4119.4C21—C20—H20119.5
C3—C4—H4119.4C20—C21—C26115.94 (19)
C4—C5—C6120.1 (2)C20—C21—C22124.9 (2)
C4—C5—H5119.9C26—C21—C22119.2 (2)
C6—C5—H5119.9C23—C22—C21119.8 (2)
C7—C6—C5124.3 (2)C23—C22—H22120.1
C7—C6—C1116.4 (2)C21—C22—H22120.1
C5—C6—C1119.3 (2)C22—C23—C24121.2 (2)
C8—C7—C6120.6 (2)C22—C23—H23119.4
C8—C7—H7119.7C24—C23—H23119.4
C6—C7—H7119.7C25—C24—C23120.2 (2)
C7—C8—C9118.8 (2)C25—C24—H24119.9
C7—C8—H8120.6C23—C24—H24119.9
C9—C8—H8120.6O2—C25—C24120.1 (2)
N1—C9—C8123.0 (2)O2—C25—C26119.5 (2)
N1—C9—C10118.97 (18)C24—C25—C26120.3 (2)
C8—C9—C10117.98 (18)N4—C26—C25117.61 (19)
N2—C10—N3112.54 (18)N4—C26—C21123.14 (19)
N2—C10—C9122.02 (18)C25—C26—C21119.2 (2)
N3—C10—C9125.44 (17)C28—C27—H27A109.5
N2—C11—C12129.9 (2)C28—C27—H27B109.5
N2—C11—C16109.73 (17)H27A—C27—H27B109.5
C12—C11—C16120.4 (2)C28—C27—H27C109.5
C13—C12—C11117.5 (2)H27A—C27—H27C109.5
C13—C12—H12121.2H27B—C27—H27C109.5
C11—C12—H12121.2C29—C28—C30i121.6 (5)
C12—C13—C14121.5 (2)C29—C28—C27117.7 (6)
C12—C13—H13119.2C30i—C28—C27120.6 (6)
C14—C13—H13119.2C30—C29—C28118.3 (5)
C15—C14—C13121.9 (2)C30—C29—H29120.9
C15—C14—H14119.0C28—C29—H29120.9
C13—C14—H14119.0C29—C30—C28i120.1 (5)
C14—C15—C16116.6 (2)C29—C30—H30120.0
C14—C15—H15121.7C28i—C30—H30120.0
C16—C15—H15121.7C9—N1—C1117.77 (18)
N3—C16—C15132.0 (2)C10—N2—C11105.48 (17)
N3—C16—C11106.02 (18)C10—N3—C16106.21 (16)
C15—C16—C11122.00 (19)C10—N3—C17129.92 (17)
N3—C17—C18114.36 (16)C16—N3—C17123.86 (16)
N3—C17—H17A108.7C18—N4—C26118.16 (17)
C18—C17—H17A108.7C2—O1—H1109.5
N3—C17—H17B108.7C25—O2—H2109.5
N1—C1—C2—O12.7 (3)C19—C20—C21—C22179.3 (2)
C6—C1—C2—O1−177.24 (19)C20—C21—C22—C23179.0 (2)
N1—C1—C2—C3−178.68 (19)C26—C21—C22—C23−0.6 (3)
C6—C1—C2—C31.4 (3)C21—C22—C23—C240.3 (4)
O1—C2—C3—C4177.8 (2)C22—C23—C24—C25−0.1 (4)
C1—C2—C3—C4−0.8 (3)C23—C24—C25—O2178.7 (2)
C2—C3—C4—C50.0 (4)C23—C24—C25—C260.2 (4)
C3—C4—C5—C60.2 (4)O2—C25—C26—N41.5 (3)
C4—C5—C6—C7−178.4 (2)C24—C25—C26—N4179.9 (2)
C4—C5—C6—C10.4 (3)O2—C25—C26—C21−179.1 (2)
N1—C1—C6—C7−2.3 (3)C24—C25—C26—C21−0.6 (3)
C2—C1—C6—C7177.70 (19)C20—C21—C26—N40.6 (3)
N1—C1—C6—C5178.91 (19)C22—C21—C26—N4−179.78 (19)
C2—C1—C6—C5−1.1 (3)C20—C21—C26—C25−178.89 (19)
C5—C6—C7—C8−178.7 (2)C22—C21—C26—C250.8 (3)
C1—C6—C7—C82.5 (3)C30i—C28—C29—C30−1.2 (8)
C6—C7—C8—C9−0.7 (3)C27—C28—C29—C30−178.0 (5)
C7—C8—C9—N1−1.8 (3)C28—C29—C30—C28i1.2 (8)
C7—C8—C9—C10178.01 (19)C8—C9—N1—C12.2 (3)
N1—C9—C10—N2179.53 (18)C10—C9—N1—C1−177.69 (17)
C8—C9—C10—N2−0.3 (3)C6—C1—N1—C90.0 (3)
N1—C9—C10—N3−0.2 (3)C2—C1—N1—C9180.00 (18)
C8—C9—C10—N3179.92 (18)N3—C10—N2—C11−0.2 (2)
N2—C11—C12—C13−179.8 (2)C9—C10—N2—C11−179.95 (17)
C16—C11—C12—C13−0.5 (3)C12—C11—N2—C10178.8 (2)
C11—C12—C13—C14−0.3 (3)C16—C11—N2—C10−0.6 (2)
C12—C13—C14—C150.6 (4)N2—C10—N3—C160.8 (2)
C13—C14—C15—C16−0.1 (4)C9—C10—N3—C16−179.41 (18)
C14—C15—C16—N3178.5 (2)N2—C10—N3—C17−178.58 (18)
C14—C15—C16—C11−0.8 (3)C9—C10—N3—C171.2 (3)
N2—C11—C16—N31.0 (2)C15—C16—N3—C10179.6 (2)
C12—C11—C16—N3−178.36 (18)C11—C16—N3—C10−1.1 (2)
N2—C11—C16—C15−179.55 (19)C15—C16—N3—C17−1.0 (3)
C12—C11—C16—C151.1 (3)C11—C16—N3—C17178.35 (17)
N3—C17—C18—N4158.92 (17)C18—C17—N3—C10−81.6 (3)
N3—C17—C18—C19−23.0 (3)C18—C17—N3—C1699.1 (2)
N4—C18—C19—C202.3 (3)C19—C18—N4—C26−2.8 (3)
C17—C18—C19—C20−175.59 (19)C17—C18—N4—C26175.22 (16)
C18—C19—C20—C21−0.3 (3)C25—C26—N4—C18−179.18 (18)
C19—C20—C21—C26−1.1 (3)C21—C26—N4—C181.4 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.292.745 (3)116
O1—H1···N40.822.473.131 (3)139
O2—H2···N40.822.272.722 (3)116
O2—H2···N2ii0.822.553.145 (3)131

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2138).

References

  • Boufatah, N., Gellis, A., Maldonado, J. & Vanelle, P. (2004). Tetrahedron, 60, 9131–9137.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, D. & Martell, A. E. (1987). Inorg. Chem.26, 1026–1030.
  • Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk J. Chem.30, 103–108.
  • Grimmet, M. R. (1997). Imidazole and Benzimidazole Synthesis London: Academic Press.
  • Kumar, S., Kansal, V. & Bhaduri, A. (1981). Indian J. Chem. Sect. B, 20, 254–256.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srivastava, R. G. & Venkataramair, P. S. (1988). Synth. Commun.18, 1537–1544.
  • Wang, H., Li, S.-L., Liu, D.-X., Cui, X.-G. & Li, X.-Y. (1994). Acta Chim. Sin 52, 676–682.
  • Yang, H.-W., Yue, F., Feng, S., Wang, J.-D., Liu, A.-H., Chen, H.-M. & Yu, K.-B. (2004). Chin. J. Org. Chem.24, 792–796.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography