PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o634.
Published online 2010 February 13. doi:  10.1107/S1600536810005040
PMCID: PMC2983691

(E)-3-[2,5-Dioxo-3-(propan-2-yl­idene)pyrrolidin-1-yl]acrylic acid

Abstract

The title compound, C10H11NO4, was extracted from a culture broth of Penicillium verruculosum YL-52. The mol­ecular structure is essentially planar, with an r.m.s. deviation of 0.01342 (2) Å for the non-H atoms. In the crystal structure, adjacent mol­ecules are connected into a centrosymmetric dimer through a pair of O—H(...)O hydrogen bonds. The dimers are further extended into a chain by weak C—H(...)O hydrogen bonds.

Related literature

For a related structure, see: Cheng et al. (2009 [triangle]). For details of Penicillium verruculosum YL-52, see: Yang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o634-scheme1.jpg

Experimental

Crystal data

  • C10H11NO4
  • M r = 209.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o634-efi1.jpg
  • a = 6.5384 (14) Å
  • b = 7.5309 (17) Å
  • c = 10.405 (2) Å
  • α = 93.009 (3)°
  • β = 101.247 (2)°
  • γ = 90.410 (3)°
  • V = 501.74 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.33 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.965, T max = 0.991
  • 3845 measured reflections
  • 1849 independent reflections
  • 1255 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 1.05
  • 1849 reflections
  • 139 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005040/is2521sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005040/is2521Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 30571402 and 30771454).

supplementary crystallographic information

Comment

Stellera chamaejasme L belongs to a toxic plant and its root has been used as Chinese traditional herb medicine in China. Our previous study resulted in isolating a fungal strain from the rhizosphere of Stellera Chamaejasme L identified as Penicillium verruculosum YL-52 (Yang et al., 2009). In this controbution, we reported the crystal structure of the title compound which was obtained from the culture broth of Penicillium verruculosum YL-52.

The bond lengths and angles of the title compound are within normal ranges (Cheng et al., 2009). In the crystal structure, the molecule, excluding methyl H atoms, is essentially planar, with an r.m.s. deviation of 0.01342 (2) Å. Moreover, adjacent two molecules are connected into a dimer through two head to head O1—H1···O2 hydrogen bonds. The dimers are further extended into a one-dimensional chain by weak C—H···O hydrogen bonds along the b axis, in which C6—H6A is donor and O4 is acceptor (Table 1 and Fig. 2).

Experimental

The roots of Stellera Chamaejasme L was collected in Qinling mountain of Taibai town in Shaanxi province, P. R. China, in August, 2007, and the fungal strain was isolated from the rhizosphere of the plant above, and deposited in our laboratory of natural product research, Northwest A&F University, Shaanxi Province, the People's Republic of China (culture collection number YL-52), and identified as Penicillium verruculosum YL-52. Repeated column chromatography of ethyl acetate extract of the culture broth of Penicillium verruculosum YL-52 provided the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (CH), 0.97 Å (CH2) and 0.96 Å (CH3), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
Fig. 2.
View of the two-dimensional sheet (O—H···O and C—H···O hydrogen bonds are indicated as broken lines).

Crystal data

C10H11NO4Z = 2
Mr = 209.20F(000) = 220
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5384 (14) ÅCell parameters from 773 reflections
b = 7.5309 (17) Åθ = 0.00–0.00°
c = 10.405 (2) ŵ = 0.11 mm1
α = 93.009 (3)°T = 296 K
β = 101.247 (2)°Block, colourless
γ = 90.410 (3)°0.33 × 0.12 × 0.08 mm
V = 501.74 (19) Å3

Data collection

Bruker APEXII CCD diffractometer1849 independent reflections
Radiation source: fine-focus sealed tube1255 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.965, Tmax = 0.991k = −9→9
3845 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0581P)2 + 0.0541P] where P = (Fo2 + 2Fc2)/3
1849 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O21.2795 (3)0.5891 (2)0.92347 (15)0.0617 (5)
O11.5542 (3)0.5091 (3)0.83867 (17)0.0664 (5)
H11.59820.48180.91420.100*
N10.9689 (2)0.7432 (2)0.55825 (16)0.0375 (4)
O40.6865 (2)0.8327 (2)0.64451 (17)0.0611 (5)
O31.2017 (2)0.6881 (2)0.42194 (15)0.0555 (5)
C41.0334 (3)0.7417 (3)0.4361 (2)0.0372 (5)
C31.0819 (3)0.6860 (3)0.6763 (2)0.0403 (5)
H31.01430.69040.74720.048*
C50.8620 (3)0.8155 (3)0.3422 (2)0.0382 (5)
C80.8650 (3)0.8428 (3)0.2160 (2)0.0445 (6)
C21.2744 (3)0.6264 (3)0.6983 (2)0.0437 (6)
H21.34910.61840.63090.052*
C11.3693 (3)0.5730 (3)0.8297 (2)0.0441 (6)
C60.6859 (3)0.8529 (3)0.4118 (2)0.0458 (6)
H6A0.64630.97650.40600.055*
H6B0.56540.77820.37430.055*
C70.7675 (3)0.8117 (3)0.5505 (2)0.0433 (5)
C100.6796 (4)0.9171 (3)0.1284 (2)0.0580 (7)
H10A0.57140.93960.17730.087*
H10B0.62940.83310.05630.087*
H10C0.71921.02620.09530.087*
C91.0460 (4)0.8041 (4)0.1519 (3)0.0675 (8)
H9A1.10760.91380.13380.101*
H9B0.99920.73470.07130.101*
H9C1.14760.73880.20930.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0608 (11)0.0854 (13)0.0385 (10)0.0281 (9)0.0066 (8)0.0098 (8)
O10.0544 (11)0.0958 (14)0.0481 (10)0.0294 (10)0.0024 (8)0.0214 (10)
N10.0320 (9)0.0440 (10)0.0355 (10)0.0051 (8)0.0029 (8)0.0055 (8)
O40.0491 (10)0.0836 (12)0.0550 (11)0.0187 (9)0.0177 (9)0.0121 (9)
O30.0375 (9)0.0838 (12)0.0452 (9)0.0178 (8)0.0060 (7)0.0105 (8)
C40.0296 (11)0.0413 (12)0.0396 (12)0.0026 (9)0.0032 (9)0.0046 (9)
C30.0427 (13)0.0417 (12)0.0348 (12)0.0027 (10)0.0024 (10)0.0065 (9)
C50.0328 (11)0.0386 (12)0.0413 (13)0.0022 (9)0.0014 (9)0.0054 (9)
C80.0448 (13)0.0447 (13)0.0414 (13)0.0022 (10)0.0009 (10)0.0051 (10)
C20.0446 (14)0.0478 (13)0.0373 (12)0.0043 (11)0.0027 (10)0.0072 (10)
C10.0426 (13)0.0442 (13)0.0425 (13)0.0081 (10)0.0005 (11)0.0045 (10)
C60.0360 (12)0.0521 (13)0.0480 (14)0.0092 (10)0.0033 (10)0.0093 (11)
C70.0364 (12)0.0478 (13)0.0465 (14)0.0048 (10)0.0094 (11)0.0055 (10)
C100.0571 (16)0.0625 (16)0.0484 (15)0.0082 (12)−0.0073 (12)0.0138 (12)
C90.0633 (17)0.093 (2)0.0487 (15)0.0124 (15)0.0150 (13)0.0130 (14)

Geometric parameters (Å, °)

O2—C11.234 (3)C8—C91.491 (3)
O1—C11.293 (3)C8—C101.499 (3)
O1—H10.8200C2—C11.465 (3)
N1—C31.395 (3)C2—H20.9300
N1—C71.407 (3)C6—C71.488 (3)
N1—C41.415 (3)C6—H6A0.9700
O4—C71.203 (3)C6—H6B0.9700
O3—C41.207 (2)C10—H10A0.9600
C4—C51.469 (3)C10—H10B0.9600
C3—C21.321 (3)C10—H10C0.9600
C3—H30.9300C9—H9A0.9600
C5—C81.343 (3)C9—H9B0.9600
C5—C61.496 (3)C9—H9C0.9600
C1—O1—H1109.5C7—C6—C5105.09 (17)
C3—N1—C7120.90 (18)C7—C6—H6A110.7
C3—N1—C4127.07 (17)C5—C6—H6A110.7
C7—N1—C4112.03 (17)C7—C6—H6B110.7
O3—C4—N1122.39 (18)C5—C6—H6B110.7
O3—C4—C5130.8 (2)H6A—C6—H6B108.8
N1—C4—C5106.80 (17)O4—C7—N1122.9 (2)
C2—C3—N1127.1 (2)O4—C7—C6129.1 (2)
C2—C3—H3116.5N1—C7—C6107.93 (18)
N1—C3—H3116.5C8—C10—H10A109.5
C8—C5—C4125.4 (2)C8—C10—H10B109.5
C8—C5—C6126.63 (19)H10A—C10—H10B109.5
C4—C5—C6107.97 (18)C8—C10—H10C109.5
C5—C8—C9124.3 (2)H10A—C10—H10C109.5
C5—C8—C10120.9 (2)H10B—C10—H10C109.5
C9—C8—C10114.8 (2)C8—C9—H9A109.5
C3—C2—C1119.5 (2)C8—C9—H9B109.5
C3—C2—H2120.2H9A—C9—H9B109.5
C1—C2—H2120.2C8—C9—H9C109.5
O2—C1—O1123.3 (2)H9A—C9—H9C109.5
O2—C1—C2122.4 (2)H9B—C9—H9C109.5
O1—C1—C2114.3 (2)
C3—N1—C4—O3−0.1 (3)C6—C5—C8—C10−0.4 (3)
C7—N1—C4—O3179.89 (19)N1—C3—C2—C1179.57 (19)
C3—N1—C4—C5−179.71 (17)C3—C2—C1—O2−3.5 (3)
C7—N1—C4—C50.3 (2)C3—C2—C1—O1177.0 (2)
C7—N1—C3—C2−176.9 (2)C8—C5—C6—C7−176.1 (2)
C4—N1—C3—C23.1 (3)C4—C5—C6—C74.3 (2)
O3—C4—C5—C8−2.1 (4)C3—N1—C7—O43.7 (3)
N1—C4—C5—C8177.4 (2)C4—N1—C7—O4−176.4 (2)
O3—C4—C5—C6177.6 (2)C3—N1—C7—C6−177.54 (18)
N1—C4—C5—C6−2.9 (2)C4—N1—C7—C62.4 (2)
C4—C5—C8—C9−0.8 (4)C5—C6—C7—O4174.6 (2)
C6—C5—C8—C9179.6 (2)C5—C6—C7—N1−4.1 (2)
C4—C5—C8—C10179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.647 (2)174
C6—H6A···O4ii0.972.603.399 (3)140

Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2521).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, L.-Z., Zhou, L., Xu, H. & Qin, B.-F. (2009). Acta Agric. Boreal. Occident. Sin.18, 98–102.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography