PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o569.
Published online 2010 February 10. doi:  10.1107/S160053681000437X
PMCID: PMC2983684

Ethyl [1-(4-bromo­phen­yl)-1-hydr­oxy-3-oxobut­yl](phen­yl)phosphinate monohydrate1

Abstract

In the title hydrate, C18H20BrO4P·H2O, a staggered conformation is found when the organic mol­ecule is viewed down the central P—C bond, with the oxo and hydroxyl groups being diagonally opposite; each of the central P and C atoms has an S-configuration. The crystal structure features supra­molecular double chains along the b axis mediated by Ohydrox­yl–H(...)Ooxo, Owater–H(...)Ooxo, and Owater–H(...)Owater hydrogen bonds.

Related literature

For background to the enanti­oselective synthesis of the biologically significant R-hydroxy­phosphinates, see: Samanta et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o569-scheme1.jpg

Experimental

Crystal data

  • C18H20BrO4P·H2O
  • M r = 429.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o569-efi1.jpg
  • a = 10.140 (2) Å
  • b = 5.7779 (12) Å
  • c = 16.691 (3) Å
  • β = 104.79 (3)°
  • V = 945.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.28 mm−1
  • T = 173 K
  • 0.30 × 0.11 × 0.08 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.607, T max = 1
  • 6979 measured reflections
  • 3568 independent reflections
  • 3382 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.094
  • S = 1.06
  • 3568 reflections
  • 236 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1408 Friedel pairs
  • Flack parameter: 0.015 (10)

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000437X/hb5328sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000437X/hb5328Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NIH-NIGMS (grant No. 1SC1GM082718-01 A1) for financial support of this research and the Welch Foundation (grant No. AX-1593) for financial support for preliminary aspects of this research.

supplementary crystallographic information

Comment

The title hydrate, (I), was investigated as a part of on-going studies on the enantioselective synthesis of the biologically significant R-hydroxyphosphinates (Samanta et al., 2010). The crystal structure analysis of diastereoisomer in (I), Fig. 1, confirms the stereochemistry of the C1 atom to be S and that of the P2 atom to be likewise S. There are significant hydrogen bonding interactions in the structure and the solvent water molecules play a pivotal role in the supramolecular aggregation. Direct links between molecules are found through the agency of O1hydroxyl—H1o···O2oxo hydrogen bonds, Fig. 2 and Table 1. Chains thus formed along the b direction are linked into double chains via a central zig-zag arrangement of hydrogen bonded water molecules that are connected to phosphorous-oxide atoms, Fig. 2 and Table 1. The combination of these O—H···O interactions leads to the formation of 13-membered {···O═ PCOH···Ooxo···HOwaterH···OwaterH···OwaterH} synthons. These chains are connected into layers in the ab plane via C–H···O interactions, Table 1, involving a methyl-H and carbonyl-O atoms, Fig. 3.

Experimental

The title compound was prepared as described in the literature (Samanta et al., 2010). Crystals were obtained by dissolving the diastereomeric products obtained in the cross aldol reaction in a minimum amount of ethyl acetate and then diluting with hexane. The solution was kept in the open to allow solvent slow evaporation, and colourless blocks of (I) were obtained after 24 h.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The methyl H-atoms were rotated to fit the electron density. The O–H H atoms were located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of the molecule in (I), showing displacement ellipsoids at the 50% probability level. The water molecule is not shown.
Fig. 2.
Supramolecular double chain along the b axis in (I) mediated by O–H···O hydrogen bonding (orange dashed lines). Colour scheme: Br, olive; P. pink; O, red; N, blue; C, grey; and H, green.
Fig. 3.
View in projection down the b axis of the unit cell contents in (I) highlighting the formation of layers in the ab plane. The O–H···O hydrogen bonding and C–H···O contacts are shown as orange ...

Crystal data

C18H20BrO4P·H2OF(000) = 440
Mr = 429.24Dx = 1.508 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 2824 reflections
a = 10.140 (2) Åθ = 2.5–30.2°
b = 5.7779 (12) ŵ = 2.28 mm1
c = 16.691 (3) ÅT = 173 K
β = 104.79 (3)°Block, colourless
V = 945.5 (3) Å30.30 × 0.11 × 0.08 mm
Z = 2

Data collection

Rigaku AFC12K/SATURN724 diffractometer3568 independent reflections
Radiation source: fine-focus sealed tube3382 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −12→12
Tmin = 0.607, Tmax = 1k = −7→6
6979 measured reflectionsl = −20→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0353P)2 + 0.386P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3568 reflectionsΔρmax = 0.31 e Å3
236 parametersΔρmin = −0.37 e Å3
5 restraintsAbsolute structure: Flack (1983), 1408 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.015 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br140.57412 (4)−0.25929 (15)0.62623 (3)0.04821 (16)
P20.00084 (10)0.0452 (2)0.76819 (6)0.0228 (2)
O10.1397 (3)0.4301 (5)0.76143 (18)0.0293 (6)
H1O0.09810.51360.78820.044*
O1W0.0072 (4)−0.2519 (7)0.97010 (18)0.0583 (9)
H1W0.0023−0.25490.91910.087*
H2W0.0093−0.39170.98410.087*
O20.0088 (3)−0.1965 (4)0.80037 (15)0.0291 (6)
O30.4175 (3)0.4060 (6)0.89220 (18)0.0380 (7)
O21−0.0871 (2)0.2144 (5)0.80840 (14)0.0259 (5)
C10.1642 (3)0.2055 (7)0.7962 (2)0.0220 (8)
C20.2089 (4)0.2109 (7)0.8912 (2)0.0276 (8)
H2A0.13470.28290.91130.033*
H2B0.21820.04910.91140.033*
C30.3397 (4)0.3364 (6)0.9309 (2)0.0283 (9)
C40.3666 (5)0.3686 (9)1.0232 (3)0.0445 (12)
H4A0.39410.22051.05110.067*
H4B0.28350.42401.03670.067*
H4C0.43980.48221.04190.067*
C110.2671 (4)0.0904 (6)0.7559 (2)0.0228 (8)
C120.3013 (4)0.1955 (7)0.6892 (2)0.0309 (9)
H120.26080.33970.66930.037*
C130.3937 (4)0.0940 (7)0.6509 (2)0.0296 (9)
H130.41780.16840.60590.035*
C140.4496 (4)−0.1171 (7)0.6798 (2)0.0297 (9)
C150.4176 (4)−0.2265 (7)0.7454 (2)0.0299 (9)
H150.4573−0.37180.76440.036*
C160.3267 (4)−0.1221 (7)0.7834 (2)0.0262 (8)
H160.3046−0.19660.82900.031*
C21−0.0698 (4)0.0655 (7)0.6594 (2)0.0249 (8)
C22−0.0543 (4)−0.1151 (7)0.6068 (2)0.0303 (9)
H22−0.0024−0.24810.62860.036*
C23−0.1158 (4)−0.0985 (8)0.5218 (3)0.0336 (10)
H23−0.1061−0.22140.48590.040*
C24−0.1898 (4)0.0934 (7)0.4901 (3)0.0367 (10)
H24−0.23180.10190.43230.044*
C25−0.2041 (4)0.2751 (8)0.5410 (2)0.0389 (10)
H25−0.25470.40850.51820.047*
C26−0.1447 (4)0.2630 (8)0.6256 (2)0.0302 (8)
H26−0.15470.38780.66060.036*
C31−0.2290 (4)0.1602 (8)0.8061 (3)0.0384 (10)
H31A−0.23370.01630.83750.046*
H31B−0.28270.13760.74820.046*
C32−0.2844 (5)0.3569 (9)0.8440 (3)0.0504 (13)
H32A−0.37970.32570.84310.076*
H32B−0.27920.49830.81250.076*
H32C−0.23090.37710.90140.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br140.0388 (2)0.0579 (3)0.0544 (3)0.0052 (2)0.0236 (2)−0.0160 (2)
P20.0238 (5)0.0223 (5)0.0239 (5)0.0017 (4)0.0092 (4)−0.0009 (4)
O10.0350 (16)0.0203 (13)0.0357 (16)0.0046 (12)0.0149 (13)0.0010 (11)
O1W0.086 (2)0.058 (2)0.0360 (17)−0.006 (3)0.0257 (18)−0.0023 (19)
O20.0414 (16)0.0215 (14)0.0278 (13)0.0016 (11)0.0150 (12)0.0025 (10)
O30.0343 (17)0.0476 (18)0.0342 (16)−0.0089 (14)0.0123 (14)−0.0023 (14)
O210.0224 (12)0.0297 (14)0.0284 (12)0.0014 (12)0.0116 (10)−0.0040 (12)
C10.0196 (17)0.024 (2)0.0237 (17)0.0055 (15)0.0068 (14)−0.0003 (15)
C20.0313 (19)0.030 (2)0.0242 (18)0.0019 (18)0.0116 (15)−0.0036 (17)
C30.031 (2)0.0249 (19)0.029 (2)0.0062 (16)0.0062 (17)0.0001 (16)
C40.045 (3)0.058 (3)0.030 (2)−0.009 (2)0.010 (2)−0.009 (2)
C110.0190 (18)0.0242 (19)0.0243 (18)0.0002 (14)0.0040 (15)−0.0031 (15)
C120.036 (2)0.033 (2)0.0255 (19)0.0036 (17)0.0092 (17)0.0021 (17)
C130.034 (2)0.033 (2)0.0239 (19)−0.0012 (17)0.0110 (17)−0.0008 (17)
C140.023 (2)0.035 (2)0.032 (2)−0.0029 (17)0.0074 (17)−0.0130 (18)
C150.0232 (19)0.028 (2)0.037 (2)0.0017 (17)0.0047 (16)−0.0001 (18)
C160.026 (2)0.0239 (19)0.0293 (19)0.0006 (16)0.0093 (16)0.0020 (16)
C210.0227 (19)0.0254 (19)0.0264 (19)−0.0001 (15)0.0059 (15)−0.0036 (15)
C220.033 (2)0.026 (2)0.031 (2)0.0067 (17)0.0069 (18)−0.0040 (17)
C230.039 (2)0.033 (2)0.028 (2)−0.0032 (19)0.0086 (19)−0.0100 (17)
C240.037 (2)0.044 (3)0.027 (2)0.000 (2)0.0024 (18)−0.0053 (19)
C250.043 (2)0.039 (3)0.031 (2)0.007 (2)0.0025 (18)0.002 (2)
C260.036 (2)0.027 (2)0.0284 (18)0.0062 (19)0.0099 (16)−0.0020 (18)
C310.031 (2)0.045 (3)0.044 (2)−0.0021 (18)0.018 (2)−0.0023 (19)
C320.037 (3)0.057 (3)0.064 (3)0.017 (2)0.024 (2)0.004 (3)

Geometric parameters (Å, °)

Br14—C141.909 (4)C13—C141.379 (6)
P2—O21.491 (2)C13—H130.9500
P2—O211.584 (3)C14—C151.373 (5)
P2—C211.778 (4)C15—C161.383 (5)
P2—C11.850 (4)C15—H150.9500
O1—C11.418 (5)C16—H160.9500
O1—H1O0.8400C21—C221.397 (5)
O1W—H1W0.8400C21—C261.407 (5)
O1W—H2W0.8400C22—C231.400 (6)
O3—C31.209 (5)C22—H220.9500
O21—C311.464 (5)C23—C241.368 (6)
C1—C111.531 (5)C23—H230.9500
C1—C21.534 (4)C24—C251.382 (6)
C2—C31.508 (5)C24—H240.9500
C2—H2A0.9900C25—C261.388 (5)
C2—H2B0.9900C25—H250.9500
C3—C41.506 (5)C26—H260.9500
C4—H4A0.9800C31—C321.479 (6)
C4—H4B0.9800C31—H31A0.9900
C4—H4C0.9800C31—H31B0.9900
C11—C121.388 (5)C32—H32A0.9800
C11—C161.393 (5)C32—H32B0.9800
C12—C131.392 (5)C32—H32C0.9800
C12—H120.9500
O2—P2—O21114.20 (15)C13—C14—C15121.8 (4)
O2—P2—C21113.59 (17)C13—C14—Br14118.6 (3)
O21—P2—C21105.60 (16)C15—C14—Br14119.6 (3)
O2—P2—C1114.53 (16)C14—C15—C16119.0 (4)
O21—P2—C198.54 (15)C14—C15—H15120.5
C21—P2—C1109.05 (17)C16—C15—H15120.5
C1—O1—H1O111.5C15—C16—C11121.2 (4)
H1W—O1W—H2W104.7C15—C16—H16119.4
C31—O21—P2120.9 (2)C11—C16—H16119.4
O1—C1—C11106.6 (3)C22—C21—C26119.3 (3)
O1—C1—C2112.3 (3)C22—C21—P2120.8 (3)
C11—C1—C2114.1 (3)C26—C21—P2119.9 (3)
O1—C1—P2107.6 (2)C21—C22—C23119.5 (4)
C11—C1—P2109.7 (2)C21—C22—H22120.2
C2—C1—P2106.3 (2)C23—C22—H22120.2
C3—C2—C1117.3 (3)C24—C23—C22120.4 (4)
C3—C2—H2A108.0C24—C23—H23119.8
C1—C2—H2A108.0C22—C23—H23119.8
C3—C2—H2B108.0C23—C24—C25120.7 (4)
C1—C2—H2B108.0C23—C24—H24119.6
H2A—C2—H2B107.2C25—C24—H24119.6
O3—C3—C2123.1 (3)C24—C25—C26120.1 (4)
O3—C3—C4122.2 (4)C24—C25—H25120.0
C2—C3—C4114.7 (4)C26—C25—H25120.0
C3—C4—H4A109.5C25—C26—C21119.9 (4)
C3—C4—H4B109.5C25—C26—H26120.1
H4A—C4—H4B109.5C21—C26—H26120.1
C3—C4—H4C109.5O21—C31—C32107.6 (4)
H4A—C4—H4C109.5O21—C31—H31A110.2
H4B—C4—H4C109.5C32—C31—H31A110.2
C12—C11—C16118.3 (3)O21—C31—H31B110.2
C12—C11—C1120.0 (3)C32—C31—H31B110.2
C16—C11—C1121.7 (3)H31A—C31—H31B108.5
C11—C12—C13121.3 (4)C31—C32—H32A109.5
C11—C12—H12119.4C31—C32—H32B109.5
C13—C12—H12119.4H32A—C32—H32B109.5
C14—C13—C12118.5 (4)C31—C32—H32C109.5
C14—C13—H13120.8H32A—C32—H32C109.5
C12—C13—H13120.8H32B—C32—H32C109.5
O2—P2—O21—C31−55.9 (3)C1—C11—C12—C13−179.5 (3)
C21—P2—O21—C3169.7 (3)C11—C12—C13—C141.1 (6)
C1—P2—O21—C31−177.7 (3)C12—C13—C14—C15−0.8 (5)
O2—P2—C1—O1−179.9 (2)C12—C13—C14—Br14179.0 (3)
O21—P2—C1—O1−58.3 (2)C13—C14—C15—C160.1 (6)
C21—P2—C1—O151.5 (3)Br14—C14—C15—C16−179.7 (3)
O2—P2—C1—C1164.5 (3)C14—C15—C16—C110.4 (6)
O21—P2—C1—C11−173.9 (2)C12—C11—C16—C15−0.1 (5)
C21—P2—C1—C11−64.1 (3)C1—C11—C16—C15178.8 (3)
O2—P2—C1—C2−59.4 (3)O2—P2—C21—C22−29.9 (4)
O21—P2—C1—C262.2 (3)O21—P2—C21—C22−155.8 (3)
C21—P2—C1—C2172.1 (2)C1—P2—C21—C2299.1 (3)
O1—C1—C2—C3−61.6 (4)O2—P2—C21—C26148.7 (3)
C11—C1—C2—C359.9 (5)O21—P2—C21—C2622.8 (4)
P2—C1—C2—C3−179.0 (3)C1—P2—C21—C26−82.3 (3)
C1—C2—C3—O3−9.4 (6)C26—C21—C22—C23−1.3 (6)
C1—C2—C3—C4170.7 (4)P2—C21—C22—C23177.3 (3)
O1—C1—C11—C12−9.3 (4)C21—C22—C23—C240.5 (6)
C2—C1—C11—C12−133.8 (4)C22—C23—C24—C250.6 (7)
P2—C1—C11—C12107.0 (3)C23—C24—C25—C26−0.9 (7)
O1—C1—C11—C16171.9 (3)C24—C25—C26—C210.1 (6)
C2—C1—C11—C1647.4 (5)C22—C21—C26—C251.0 (6)
P2—C1—C11—C16−71.8 (4)P2—C21—C26—C25−177.6 (3)
C16—C11—C12—C13−0.7 (5)P2—O21—C31—C32−176.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.841.942.698 (4)150
O1w—H1w···O20.842.032.855 (4)168
O1w—H2w···O1wii0.842.243.072 (6)172

Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+2.

Footnotes

1Data reported in this paper were previously deposited with the CCDC (No. 628997).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5328).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Samanta, S., Perera, S. & Zhao, C.-G. (2010). J. Org. Chem., doi: 10.1021/jo9022099.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography