PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o558.
Published online 2010 February 6. doi:  10.1107/S1600536810003946
PMCID: PMC2983682

(E)-N-Benzyl­idene-4H-1,2,4-triazol-4-amine

Abstract

The title compound, C9H8N4, crystallizes with three independent mol­ecules (A, B and C) per asymmetric unit. The independent mol­ecules differ slightly in their conformations, the dihedral angles between the triazole and phenyl rings in mol­ecules A, B and C being 4.8 (2), 9.7 (2) and 7.2 (2)°, respectively. In the crystal, the independent mol­ecules are linked into a trimer by C—H(...)N hydrogen bonds.

Related literature

For the biological activity of triazole derivatives, see: Demirbas et al. (2002 [triangle]); Foroumadi et al. (2003 [triangle]); He et al. (2006 [triangle]); Kritsanida et al. (2002 [triangle]); Manfredini et al. (2000 [triangle]). For C—N and C=N bond-length data, see: Jin et al. (2004 [triangle]); Xiang et al. (2004 [triangle]). For graph-set analysis, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o558-scheme1.jpg

Experimental

Crystal data

  • C9H8N4
  • M r = 172.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o558-efi1.jpg
  • a = 33.0059 (11) Å
  • b = 4.0639 (1) Å
  • c = 20.6535 (7) Å
  • β = 111.067 (2)°
  • V = 2585.14 (14) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.983, T max = 0.990
  • 14802 measured reflections
  • 3418 independent reflections
  • 2582 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.133
  • S = 0.99
  • 3418 reflections
  • 352 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003946/ci5006sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003946/ci5006Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

supplementary crystallographic information

Comment

1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms. The 1,2,4-triazole derivatives are used to build polymetallic complexes (He et al., 2006). Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Manfredini et al., 2000). Due to their significant biological applications, triazoles have gained much attention in bioinorganic and metal-based drug discovery (Demirbas et al., 2002; Kritsanida et al., 2002).

There are three crystallographically independent molecules (A, B and C) in the asymmetric unit (Fig. 1). The 1,2,4-triazole ring (N1/N2/C3/N4/C5) is planar and attached to the phenyl ring (C8-C13) through the C═N bond. The dihedral angles between triazole and phenyl rings are 4.8 (2)°, 9.7 (2)° and 7.2 (2)° for molecules A, B and C, respectively. The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double C═N bond [1.269 (2) Å] (Xiang et al., 2004), but shorter than a C—N single bond [1.443 (4) Å] (Jin et al., 2004), indicating the possibility of electron delocalization.

The crystal packing (Fig 2) shows that the indepentent molecules exist as C—H···N hydrogen-bonded trimers.

Experimental

A mixture of benzaldehyde (10 mmol) and 4-amino-4H-1,2,4-triazole (10 mmol) in ethanol was refluxed on a steam-bath for 30 min. The colour of the solution changed to reddish-orange and was kept under ice-cold conditions to obtain a white solid product. Single crystals were formed in the mother liquor after five days.

Refinement

H atoms were positioned geometrically (C-H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing the formation of hydrogen-bonded (dashed lines) trimers.

Crystal data

C9H8N4F(000) = 1080
Mr = 172.19Dx = 1.327 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 14802 reflections
a = 33.0059 (11) Åθ = 2.1–27.6°
b = 4.0639 (1) ŵ = 0.09 mm1
c = 20.6535 (7) ÅT = 293 K
β = 111.067 (2)°Block, colourless
V = 2585.14 (14) Å30.20 × 0.15 × 0.12 mm
Z = 12

Data collection

Bruker Kappa APEXII area-detector diffractometer3418 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
graphiteRint = 0.032
ω and [var phi] scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −42→42
Tmin = 0.983, Tmax = 0.990k = −4→5
14802 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0936P)2] where P = (Fo2 + 2Fc2)/3
3418 reflections(Δ/σ)max = 0.005
352 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A1.09649 (8)0.8835 (8)0.61511 (13)0.0763 (7)
N2A1.10029 (7)0.8972 (8)0.68405 (12)0.0759 (7)
C3A1.06740 (8)0.7385 (9)0.68915 (13)0.0669 (8)
H3A1.06220.71060.73020.080*
N4A1.04188 (6)0.6199 (6)0.62682 (10)0.0531 (5)
C5A1.06160 (9)0.7183 (9)0.58349 (14)0.0683 (8)
H5A1.05130.67260.53620.082*
N6A1.00305 (6)0.4455 (6)0.60450 (10)0.0534 (5)
C7A0.98725 (7)0.3748 (7)0.64995 (11)0.0499 (5)
H7A1.00220.43440.69590.060*
C8A0.94615 (7)0.2018 (6)0.63197 (11)0.0480 (5)
C9A0.92932 (8)0.1395 (8)0.68311 (12)0.0566 (6)
H9A0.94480.20180.72870.068*
C10A0.88964 (9)−0.0149 (8)0.66666 (14)0.0678 (8)
H10A0.8782−0.05230.70110.081*
C11A0.86711 (8)−0.1130 (8)0.60023 (14)0.0643 (7)
H11A0.8404−0.21690.58950.077*
C12A0.88395 (8)−0.0582 (8)0.54891 (13)0.0601 (6)
H12A0.8689−0.12930.50380.072*
C13A0.92287 (8)0.1007 (7)0.56441 (12)0.0533 (6)
H13A0.93380.14150.52950.064*
N1B0.65846 (7)0.6473 (9)0.90074 (12)0.0818 (9)
N2B0.69659 (7)0.7618 (10)0.94996 (11)0.0836 (9)
C3B0.71899 (8)0.8843 (11)0.91654 (12)0.0724 (9)
H3B0.74610.98090.93740.087*
N4B0.69836 (6)0.8560 (7)0.84744 (9)0.0559 (6)
C5B0.66061 (8)0.7056 (10)0.84063 (13)0.0710 (9)
H5B0.63910.65150.79850.085*
N6B0.71639 (6)0.9630 (7)0.79949 (9)0.0548 (5)
C7B0.69559 (7)0.8917 (7)0.73663 (11)0.0500 (6)
H7B0.66910.78350.72440.060*
C8B0.71297 (7)0.9785 (7)0.68307 (11)0.0474 (5)
C9B0.75212 (8)1.1431 (8)0.69885 (13)0.0561 (6)
H9B0.76731.21180.74410.067*
C10B0.76865 (8)1.2052 (8)0.64756 (14)0.0630 (7)
H10B0.79511.31280.65830.076*
C11B0.74595 (9)1.1078 (8)0.58065 (13)0.0636 (7)
H11B0.75701.15160.54600.076*
C12B0.70704 (8)0.9466 (8)0.56432 (12)0.0601 (7)
H12B0.69190.88080.51890.072*
C13B0.69040 (7)0.8821 (7)0.61552 (11)0.0535 (6)
H13B0.66400.77370.60450.064*
N1C0.49788 (8)0.0614 (8)0.83722 (13)0.0784 (7)
N2C0.53653 (9)0.0797 (9)0.82568 (12)0.0807 (8)
C3C0.56350 (9)0.2426 (10)0.87673 (13)0.0710 (8)
H3C0.59200.29020.88170.085*
N4C0.54458 (6)0.3340 (6)0.92178 (10)0.0537 (5)
C5C0.50405 (9)0.2134 (9)0.89449 (15)0.0684 (8)
H5C0.48310.23700.91450.082*
N6C0.55923 (6)0.5052 (6)0.98418 (10)0.0539 (5)
C7C0.59724 (7)0.6207 (7)1.00274 (11)0.0515 (6)
H7C0.61340.58970.97450.062*
C8C0.61623 (7)0.8013 (6)1.06753 (11)0.0470 (5)
C9C0.65723 (7)0.9332 (8)1.08465 (12)0.0563 (6)
H9C0.67220.90771.05450.068*
C10C0.67619 (8)1.1023 (8)1.14589 (13)0.0597 (6)
H10C0.70381.19121.15700.072*
C11C0.65420 (8)1.1391 (8)1.19040 (13)0.0610 (7)
H11C0.66711.25171.23200.073*
C12C0.61298 (8)1.0098 (8)1.17387 (13)0.0600 (7)
H12C0.59811.03671.20410.072*
C13C0.59415 (7)0.8429 (7)1.11312 (12)0.0539 (6)
H13C0.56640.75631.10210.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0707 (14)0.0899 (19)0.0753 (15)−0.0164 (15)0.0347 (12)−0.0053 (15)
N2A0.0619 (13)0.095 (2)0.0652 (13)−0.0217 (15)0.0155 (11)−0.0066 (14)
C3A0.0572 (14)0.087 (2)0.0529 (13)−0.0134 (16)0.0155 (11)−0.0027 (15)
N4A0.0480 (10)0.0627 (13)0.0492 (10)−0.0038 (10)0.0182 (8)−0.0027 (10)
C5A0.0688 (16)0.082 (2)0.0625 (14)−0.0130 (17)0.0333 (13)−0.0075 (15)
N6A0.0476 (10)0.0621 (13)0.0494 (10)−0.0056 (10)0.0161 (8)−0.0055 (10)
C7A0.0499 (12)0.0533 (14)0.0449 (11)0.0011 (11)0.0152 (9)−0.0030 (11)
C8A0.0477 (12)0.0482 (13)0.0464 (11)0.0034 (11)0.0150 (9)0.0016 (10)
C9A0.0611 (14)0.0658 (17)0.0431 (11)−0.0012 (13)0.0191 (11)0.0038 (12)
C10A0.0656 (15)0.078 (2)0.0652 (15)−0.0065 (16)0.0305 (13)0.0109 (16)
C11A0.0503 (13)0.0653 (17)0.0736 (16)−0.0079 (14)0.0177 (12)0.0058 (15)
C12A0.0560 (14)0.0621 (16)0.0549 (13)−0.0034 (13)0.0109 (11)−0.0022 (13)
C13A0.0560 (13)0.0593 (15)0.0451 (11)−0.0007 (12)0.0190 (10)−0.0021 (11)
N1B0.0627 (13)0.129 (3)0.0611 (13)−0.0159 (17)0.0309 (11)0.0037 (16)
N2B0.0653 (14)0.138 (3)0.0515 (11)−0.0044 (17)0.0259 (11)−0.0004 (16)
C3B0.0552 (14)0.117 (3)0.0464 (12)−0.0110 (18)0.0202 (11)−0.0078 (16)
N4B0.0439 (10)0.0822 (16)0.0428 (9)−0.0034 (11)0.0171 (8)−0.0026 (11)
C5B0.0501 (13)0.112 (3)0.0515 (13)−0.0165 (17)0.0192 (11)−0.0008 (16)
N6B0.0440 (10)0.0778 (16)0.0455 (10)−0.0073 (11)0.0195 (8)−0.0016 (10)
C7B0.0395 (10)0.0629 (15)0.0464 (11)−0.0009 (11)0.0141 (9)−0.0009 (11)
C8B0.0421 (11)0.0538 (14)0.0459 (11)0.0053 (10)0.0153 (9)0.0042 (11)
C9B0.0500 (12)0.0650 (17)0.0522 (12)−0.0025 (12)0.0171 (10)0.0005 (12)
C10B0.0571 (14)0.0670 (17)0.0684 (15)−0.0072 (14)0.0267 (12)0.0075 (14)
C11B0.0725 (16)0.0701 (18)0.0584 (14)0.0083 (15)0.0359 (13)0.0132 (14)
C12B0.0618 (14)0.0728 (18)0.0436 (11)0.0079 (15)0.0163 (10)0.0030 (13)
C13B0.0472 (12)0.0651 (16)0.0459 (11)0.0025 (12)0.0138 (9)−0.0010 (12)
N1C0.0705 (15)0.0883 (19)0.0681 (14)−0.0135 (14)0.0149 (12)−0.0114 (15)
N2C0.0887 (17)0.096 (2)0.0575 (12)−0.0238 (17)0.0267 (12)−0.0143 (15)
C3C0.0706 (16)0.093 (2)0.0567 (14)−0.0223 (17)0.0310 (13)−0.0140 (16)
N4C0.0526 (11)0.0584 (13)0.0481 (10)−0.0033 (10)0.0159 (8)0.0010 (10)
C5C0.0530 (14)0.077 (2)0.0696 (16)−0.0061 (15)0.0148 (13)−0.0102 (16)
N6C0.0498 (10)0.0622 (14)0.0493 (10)0.0010 (10)0.0173 (8)−0.0001 (10)
C7C0.0500 (12)0.0584 (15)0.0483 (11)0.0014 (12)0.0203 (10)0.0027 (12)
C8C0.0430 (11)0.0496 (13)0.0475 (11)0.0048 (10)0.0152 (9)0.0060 (10)
C9C0.0470 (12)0.0671 (16)0.0562 (12)−0.0006 (13)0.0201 (10)0.0000 (13)
C10C0.0447 (12)0.0682 (17)0.0610 (14)−0.0027 (13)0.0128 (11)−0.0013 (14)
C11C0.0598 (14)0.0662 (18)0.0509 (12)0.0048 (14)0.0123 (11)−0.0057 (13)
C12C0.0619 (14)0.0639 (17)0.0604 (14)0.0010 (13)0.0296 (12)−0.0061 (13)
C13C0.0467 (12)0.0607 (16)0.0565 (13)0.0009 (12)0.0213 (10)0.0012 (12)

Geometric parameters (Å, °)

N1A—C5A1.290 (4)C8B—C13B1.381 (3)
N1A—N2A1.385 (3)C8B—C9B1.386 (3)
N2A—C3A1.299 (4)C9B—C10B1.378 (3)
C3A—N4A1.349 (3)C9B—H9B0.93
C3A—H3A0.93C10B—C11B1.372 (4)
N4A—C5A1.343 (3)C10B—H10B0.93
N4A—N6A1.390 (3)C11B—C12B1.371 (4)
C5A—H5A0.93C11B—H11B0.93
N6A—C7A1.260 (3)C12B—C13B1.380 (3)
C7A—C8A1.452 (3)C12B—H12B0.93
C7A—H7A0.93C13B—H13B0.93
C8A—C9A1.382 (3)N1C—C5C1.284 (4)
C8A—C13A1.391 (3)N1C—N2C1.381 (3)
C9A—C10A1.380 (4)N2C—C3C1.292 (4)
C9A—H9A0.93C3C—N4C1.346 (3)
C10A—C11A1.364 (4)C3C—H3C0.93
C10A—H10A0.93N4C—C5C1.344 (3)
C11A—C12A1.380 (4)N4C—N6C1.389 (3)
C11A—H11A0.93C5C—H5C0.93
C12A—C13A1.369 (4)N6C—C7C1.263 (3)
C12A—H12A0.93C7C—C8C1.456 (3)
C13A—H13A0.93C7C—H7C0.93
N1B—C5B1.291 (3)C8C—C9C1.379 (3)
N1B—N2B1.384 (4)C8C—C13C1.393 (3)
N2B—C3B1.280 (4)C9C—C10C1.376 (4)
C3B—N4B1.347 (3)C9C—H9C0.93
C3B—H3B0.93C10C—C11C1.369 (3)
N4B—C5B1.349 (3)C10C—H10C0.93
N4B—N6B1.396 (2)C11C—C12C1.382 (4)
C5B—H5B0.93C11C—H11C0.93
N6B—C7B1.265 (3)C12C—C13C1.364 (4)
C7B—C8B1.461 (3)C12C—H12C0.93
C7B—H7B0.93C13C—H13C0.93
C5A—N1A—N2A106.0 (2)C9B—C8B—C7B121.7 (2)
C3A—N2A—N1A107.1 (2)C10B—C9B—C8B120.1 (2)
N2A—C3A—N4A110.7 (2)C10B—C9B—H9B120.0
N2A—C3A—H3A124.7C8B—C9B—H9B120.0
N4A—C3A—H3A124.7C11B—C10B—C9B119.8 (2)
C5A—N4A—C3A104.1 (2)C11B—C10B—H10B120.1
C5A—N4A—N6A122.7 (2)C9B—C10B—H10B120.1
C3A—N4A—N6A133.1 (2)C12B—C11B—C10B120.6 (2)
N1A—C5A—N4A112.1 (2)C12B—C11B—H11B119.7
N1A—C5A—H5A124.0C10B—C11B—H11B119.7
N4A—C5A—H5A124.0C11B—C12B—C13B119.8 (2)
C7A—N6A—N4A116.64 (18)C11B—C12B—H12B120.1
N6A—C7A—C8A121.2 (2)C13B—C12B—H12B120.1
N6A—C7A—H7A119.4C8B—C13B—C12B120.1 (2)
C8A—C7A—H7A119.4C8B—C13B—H13B120.0
C9A—C8A—C13A118.9 (2)C12B—C13B—H13B120.0
C9A—C8A—C7A119.2 (2)C5C—N1C—N2C106.4 (2)
C13A—C8A—C7A121.9 (2)C3C—N2C—N1C107.2 (2)
C10A—C9A—C8A120.1 (2)N2C—C3C—N4C110.5 (2)
C10A—C9A—H9A119.9N2C—C3C—H3C124.7
C8A—C9A—H9A119.9N4C—C3C—H3C124.7
C11A—C10A—C9A120.4 (2)C5C—N4C—C3C104.4 (2)
C11A—C10A—H10A119.8C5C—N4C—N6C122.2 (2)
C9A—C10A—H10A119.8C3C—N4C—N6C133.3 (2)
C10A—C11A—C12A120.0 (2)N1C—C5C—N4C111.5 (2)
C10A—C11A—H11A120.0N1C—C5C—H5C124.3
C12A—C11A—H11A120.0N4C—C5C—H5C124.3
C13A—C12A—C11A120.0 (2)C7C—N6C—N4C116.35 (18)
C13A—C12A—H12A120.0N6C—C7C—C8C121.2 (2)
C11A—C12A—H12A120.0N6C—C7C—H7C119.4
C12A—C13A—C8A120.5 (2)C8C—C7C—H7C119.4
C12A—C13A—H13A119.7C9C—C8C—C13C118.9 (2)
C8A—C13A—H13A119.7C9C—C8C—C7C119.4 (2)
C5B—N1B—N2B107.2 (2)C13C—C8C—C7C121.7 (2)
C3B—N2B—N1B106.5 (2)C10C—C9C—C8C120.7 (2)
N2B—C3B—N4B111.6 (3)C10C—C9C—H9C119.7
N2B—C3B—H3B124.2C8C—C9C—H9C119.7
N4B—C3B—H3B124.2C11C—C10C—C9C119.7 (2)
C3B—N4B—C5B104.2 (2)C11C—C10C—H10C120.1
C3B—N4B—N6B122.9 (2)C9C—C10C—H10C120.1
C5B—N4B—N6B132.90 (19)C10C—C11C—C12C120.3 (2)
N1B—C5B—N4B110.6 (2)C10C—C11C—H11C119.8
N1B—C5B—H5B124.7C12C—C11C—H11C119.8
N4B—C5B—H5B124.7C13C—C12C—C11C119.9 (2)
C7B—N6B—N4B116.38 (19)C13C—C12C—H12C120.0
N6B—C7B—C8B120.4 (2)C11C—C12C—H12C120.0
N6B—C7B—H7B119.8C12C—C13C—C8C120.4 (2)
C8B—C7B—H7B119.8C12C—C13C—H13C119.8
C13B—C8B—C9B119.6 (2)C8C—C13C—H13C119.8
C13B—C8B—C7B118.7 (2)
C5A—N1A—N2A—C3A0.1 (4)N6B—C7B—C8B—C13B176.8 (3)
N1A—N2A—C3A—N4A0.0 (4)N6B—C7B—C8B—C9B−0.7 (4)
N2A—C3A—N4A—C5A−0.1 (4)C13B—C8B—C9B—C10B−1.0 (4)
N2A—C3A—N4A—N6A−177.9 (3)C7B—C8B—C9B—C10B176.5 (3)
N2A—N1A—C5A—N4A−0.2 (4)C8B—C9B—C10B—C11B0.9 (4)
C3A—N4A—C5A—N1A0.2 (4)C9B—C10B—C11B—C12B−0.5 (5)
N6A—N4A—C5A—N1A178.2 (3)C10B—C11B—C12B—C13B0.2 (5)
C5A—N4A—N6A—C7A−178.2 (3)C9B—C8B—C13B—C12B0.7 (4)
C3A—N4A—N6A—C7A−0.8 (4)C7B—C8B—C13B—C12B−176.9 (3)
N4A—N6A—C7A—C8A178.1 (2)C11B—C12B—C13B—C8B−0.3 (4)
N6A—C7A—C8A—C9A−177.8 (3)C5C—N1C—N2C—C3C−0.2 (4)
N6A—C7A—C8A—C13A1.3 (4)N1C—N2C—C3C—N4C0.0 (4)
C13A—C8A—C9A—C10A−1.2 (4)N2C—C3C—N4C—C5C0.2 (4)
C7A—C8A—C9A—C10A177.9 (3)N2C—C3C—N4C—N6C178.9 (3)
C8A—C9A—C10A—C11A1.3 (5)N2C—N1C—C5C—N4C0.3 (4)
C9A—C10A—C11A—C12A0.0 (5)C3C—N4C—C5C—N1C−0.3 (4)
C10A—C11A—C12A—C13A−1.4 (5)N6C—N4C—C5C—N1C−179.2 (3)
C11A—C12A—C13A—C8A1.4 (4)C5C—N4C—N6C—C7C−176.6 (3)
C9A—C8A—C13A—C12A−0.1 (4)C3C—N4C—N6C—C7C4.9 (4)
C7A—C8A—C13A—C12A−179.2 (3)N4C—N6C—C7C—C8C−179.3 (2)
C5B—N1B—N2B—C3B0.6 (5)N6C—C7C—C8C—C9C−177.7 (3)
N1B—N2B—C3B—N4B−0.7 (5)N6C—C7C—C8C—C13C2.7 (4)
N2B—C3B—N4B—C5B0.4 (4)C13C—C8C—C9C—C10C0.3 (4)
N2B—C3B—N4B—N6B−178.3 (3)C7C—C8C—C9C—C10C−179.3 (3)
N2B—N1B—C5B—N4B−0.4 (4)C8C—C9C—C10C—C11C0.2 (4)
C3B—N4B—C5B—N1B0.0 (4)C9C—C10C—C11C—C12C−0.5 (4)
N6B—N4B—C5B—N1B178.6 (3)C10C—C11C—C12C—C13C0.4 (4)
C3B—N4B—N6B—C7B173.0 (3)C11C—C12C—C13C—C8C0.1 (4)
C5B—N4B—N6B—C7B−5.3 (5)C9C—C8C—C13C—C12C−0.4 (4)
N4B—N6B—C7B—C8B−176.9 (2)C7C—C8C—C13C—C12C179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3C—H3C···N1B0.932.543.414 (4)157
C7C—H7C···N1B0.932.493.405 (3)167
C3A—H3A···N2Ci0.932.473.387 (4)169
C7A—H7A···N2Ci0.932.583.503 (3)174
C5B—H5B···N2Aii0.932.473.371 (4)162

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5006).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem.10, 3717–3723. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem.38, 851–854. [PubMed]
  • He, X., Lu, C. Z., Wu, C. D. & Chen, L. J. (2006). Eur. J. Inorg. Chem pp. 2491–2503.
  • Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [PubMed]
  • Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257. [PubMed]
  • Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem 8, 2343–2346. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249–o2251.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography