PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o598.
Published online 2010 February 13. doi:  10.1107/S160053681000512X
PMCID: PMC2983680

5α-Dihydro­vespertilin acetate

Abstract

In the title compound, C24H36O4 [systematic name: (20S)-3β-acet­oxy-16α-hydr­oxy-22,23-bis­nor-5α,17β-cholano(22-16)lac­tone], the three six-membered rings adopt classical chair conformations, while the five-membered rings are in envelope conformations. The ester group attached to ring A is in an equatorial position. Rings A/B, B/C and C/D are trans-fused, whereas rings D/E are cis-fused. The structure is devoid of any classical hydrogen bonds. However, non-classical inter- and intra­molecular hydrogen-bonding inter­actions of the type C—H(...)O are present in the structure.

Related literature

For background to the synthesis, see: Vohra (1973 [triangle]). For spectroscopic data for 5α dihydro­vespertilin, see: Iglesias-Arteaga & Alvarado-Nuñes (2006 [triangle]). For a closely related structure, see: Novoa de Armas et al. (2000 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o598-scheme1.jpg

Experimental

Crystal data

  • C24H36O4
  • M r = 388.53
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o598-efi1.jpg
  • a = 6.4256 (3) Å
  • b = 9.6527 (6) Å
  • c = 34.953 (2) Å
  • V = 2167.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 K
  • 0.30 × 0.08 × 0.02 mm

Data collection

  • Nonius Kappa geometry diffractometer with Bruker APEXII CCD
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.977, T max = 0.998
  • 8349 measured reflections
  • 2784 independent reflections
  • 2554 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.119
  • S = 1.11
  • 2784 reflections
  • 256 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000512X/lh2988sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000512X/lh2988Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

During some investigations of the thermolysis of the N-chloro and N-bromo derivatives of secondary amides in aqueous dioxane (1:4 v/v) it was discovered that a radical-chain reaction ensued in which the first-formed N-centred radical abstracted a hydrogen atom from a proximate site. In the case of intramolecular reactions a 6-membered transition state was strongly favoured, leading to a C-centred radical which abstracted a halogen from starting material in a chain-propagating step. Under the reaction conditions the intermediate C-halo product underwent intramolecular heterolysis with the carbonyl oxygen of the amide displacing the halogen and generating an iminolactone which in turn hydrolysed to produce a γ-lactone. This process afforded a method for the functionalisation of chemically unactivated sites within the steroid nucleus as illustrated by its application to the synthesis of 5α-dihydrovespertilin acetate (I) from the 3-O-acetate of N-chloro-N-methyl-5α-bisnorcholanamide (Vohra, 1973).

The molecular structure of (I) is presented in Fig. 1. The molecule contains three six-membered rings, A, B and C and two five-membered rings, D and E. The rings A/B, B/C and C/D are trans-fused whereas the rings D/E are cis-fused. The rings A–C adopt chair conformations. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.569 (3), 0.590 (3), 0.571 (3) Å, θ = 4.6 (3), 4.4 (3), 7.3 (2)° and [var phi] = 305 (4), 272 (2), 248 (2)°, respectively. The rings D and E adopt envelope conformations with C13 and C17 0.697 (4) and 0.398 (4) Å, out of the mean-planes formed by the remaining ring atoms, respectively. The ester group attached to the ring A is in an equatorial position. The bond distances (Allen et al., 1987) and angles in (I) are as expected. The structure is devoid of any classical hydrogen bonds. However, non-classical inter and intra molecular hydrogen bonding interactions of the type C—H···O invoving O1 are present in the structure (Table 1). The crystal structure of a compound very closely related to (I), 3β-acetoxy-5α,6β-dihydroxy-bisnorcholanic acid 22,16-lactone, has been reported (Novoa de Armas et al., 2000).

Experimental

A solution of N-chloro-N-methyl-5α-bisnorcholanamide acetate (500 mg, 1.14 mmol), prepared from the parent amide by treatment with excess t-butyl hypochlorite in the dark, in aqueous 1,4-dioxane (1:4 v/v) (50 ml) containing calcium carbonate (2.5 g) and dibenzoyl peroxide (20 mg) was heated to 358 K (bath) under an atmosphere of nitrogen. After 2 hr a test for active chlorine (starch-KI paper) was negative. The mixture was filtered and the filter cake washed with dioxane (2 × 25 ml). The combined filtrate and washings were evaporated to dryness (Rotovap) and the residue separated by PTLC on silica gel 60 F254 (Merck) (1 m × 20 cm × 2 mm) using EtOAc–PhH (1:1) v/v for development to give as the major product (20S)-3β-acetoxy-16α-hydroxy-22,23-bisnor-5α,17β-cholano(22-16)lactone (181 mg, 0.53 mmol, 46%), m.p. 492–493 K, with 1H and 13C-NMR as reported for this compound, 5α dihydrovespertilin (Iglesias-Arteaga & Alvarado-Nuñes, 2006). Suitable crystals of the title compound for X-ray study were grown from an aqueous solution of ethanol (ca 1:20) in the form of plates.

Refinement

An absolute structure could not be established reliably because of insufficient anomalous scattering effects. Therefore, Friedel pairs (1738) were merged. The H atoms were included in the refinements at geometrically idealized positions with C—H distances = 0.98, 0.99 and 1.00 Å for methyl, methylene and methine type H atoms, respectively. The H atoms were assigned Uiso = 1.5 and 1.2 times Ueq of the methyl and non-methyl C atoms to which they were bonded. H atoms bonded to C24 were disordered over six sites with equal site occupancy factors. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.

Crystal data

C24H36O4Dx = 1.190 Mg m3
Mr = 388.53Melting point = 492–493 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2395 reflections
a = 6.4256 (3) Åθ = 1.0–27.5°
b = 9.6527 (6) ŵ = 0.08 mm1
c = 34.953 (2) ÅT = 173 K
V = 2167.9 (2) Å3Plate, colourless
Z = 40.30 × 0.08 × 0.02 mm
F(000) = 848

Data collection

Nonius APEXII CCD diffractometer2784 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −8→8
Tmin = 0.977, Tmax = 0.998k = −12→12
8349 measured reflectionsl = −44→45

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.037P)2 + 1.01P] where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.An absolute structure using Flack method [Flack H D (1983), Acta Cryst. A39, 876-881] could not be established reliably becuase of insufficient anomalous scattering effects. Therefore, Friedel pairs (1738) were merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1−0.0207 (3)0.09610 (19)0.50200 (5)0.0334 (4)
O2−0.1447 (3)−0.0949 (2)0.47447 (6)0.0434 (5)
O30.8680 (4)0.1358 (3)0.78266 (5)0.0487 (6)
O41.2141 (4)0.0994 (3)0.78197 (7)0.0667 (8)
C10.8182 (4)−0.0137 (3)0.68247 (7)0.0358 (6)
H1A0.93270.03360.66870.043*
H1B0.8152−0.11130.67380.043*
C20.8633 (5)−0.0097 (3)0.72580 (7)0.0407 (7)
H2A0.7571−0.06500.73950.049*
H2B1.0012−0.05150.73090.049*
C30.8604 (5)0.1379 (3)0.74049 (7)0.0402 (7)
H30.98400.18900.73040.048*
C40.6643 (5)0.2149 (3)0.73005 (7)0.0418 (7)
H4A0.67820.31320.73780.050*
H4B0.54530.17470.74420.050*
C50.6209 (5)0.2071 (3)0.68664 (7)0.0349 (6)
H50.74180.25190.67350.042*
C60.4282 (5)0.2905 (3)0.67576 (8)0.0471 (8)
H6A0.44470.38720.68470.057*
H6B0.30470.25060.68860.057*
C70.3937 (5)0.2900 (3)0.63221 (8)0.0435 (7)
H7A0.26130.33790.62630.052*
H7B0.50790.34170.61960.052*
C80.3860 (4)0.1422 (3)0.61610 (6)0.0295 (5)
H80.26300.09370.62740.035*
C90.5849 (4)0.0615 (3)0.62748 (6)0.0274 (5)
H90.70490.11680.61760.033*
C100.6112 (4)0.0558 (3)0.67195 (6)0.0294 (5)
C110.5995 (4)−0.0820 (3)0.60811 (7)0.0308 (5)
H11A0.7385−0.12220.61330.037*
H11B0.4941−0.14430.61960.037*
C120.5651 (4)−0.0757 (3)0.56452 (7)0.0297 (5)
H12A0.6806−0.02370.55250.036*
H12B0.5651−0.17080.55390.036*
C130.3596 (4)−0.0054 (2)0.55515 (6)0.0256 (5)
C140.3631 (4)0.1415 (2)0.57245 (6)0.0270 (5)
H140.49040.18770.56210.032*
C150.1770 (4)0.2139 (3)0.55379 (7)0.0332 (6)
H15A0.19510.31580.55380.040*
H15B0.04560.19040.56700.040*
C160.1799 (4)0.1556 (3)0.51274 (7)0.0296 (5)
H160.22310.22860.49410.035*
C170.3339 (4)0.0331 (2)0.51221 (6)0.0267 (5)
H170.47060.06400.50150.032*
C180.1768 (4)−0.0934 (3)0.56960 (7)0.0316 (5)
H18A0.0453−0.04820.56280.047*
H18B0.1857−0.10280.59750.047*
H18C0.1825−0.18540.55780.047*
C190.4331 (5)−0.0268 (3)0.69033 (8)0.0404 (7)
H19A0.30010.00320.67940.061*
H19B0.4324−0.01060.71800.061*
H19C0.4532−0.12580.68530.061*
C200.2312 (4)−0.0705 (3)0.48481 (7)0.0286 (5)
H200.2516−0.16760.49410.034*
C210.3096 (4)−0.0551 (3)0.44337 (7)0.0375 (6)
H21A0.2275−0.11500.42650.056*
H21B0.4564−0.08200.44210.056*
H21C0.29450.04160.43520.056*
C220.0030 (4)−0.0311 (3)0.48607 (7)0.0321 (6)
C231.0529 (6)0.1106 (4)0.79906 (8)0.0500 (8)
C241.0304 (7)0.0994 (4)0.84196 (8)0.0692 (12)
H24A0.88400.11200.84900.104*0.50
H24B1.11490.17120.85430.104*0.50
H24C1.07770.00790.85040.104*0.50
H24D1.16700.08200.85350.104*0.50
H24E0.93620.02280.84820.104*0.50
H24F0.97330.18610.85210.104*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0272 (9)0.0343 (9)0.0388 (9)0.0019 (9)−0.0071 (8)−0.0022 (8)
O20.0321 (10)0.0468 (11)0.0514 (11)−0.0070 (10)−0.0072 (9)−0.0082 (10)
O30.0518 (12)0.0723 (15)0.0220 (8)−0.0066 (13)−0.0015 (9)−0.0056 (9)
O40.0518 (15)0.101 (2)0.0472 (13)−0.0075 (17)−0.0111 (11)−0.0020 (14)
C10.0372 (14)0.0467 (16)0.0236 (11)0.0070 (14)−0.0036 (11)−0.0019 (11)
C20.0420 (15)0.0546 (17)0.0256 (11)0.0005 (16)−0.0057 (12)−0.0018 (12)
C30.0413 (15)0.0593 (18)0.0198 (11)−0.0058 (16)0.0006 (11)−0.0037 (11)
C40.0459 (16)0.0522 (16)0.0272 (12)−0.0016 (16)0.0009 (12)−0.0116 (12)
C50.0413 (15)0.0400 (14)0.0234 (11)0.0000 (14)0.0007 (11)−0.0054 (10)
C60.060 (2)0.0486 (17)0.0327 (13)0.0151 (17)−0.0029 (14)−0.0143 (13)
C70.0559 (18)0.0389 (15)0.0357 (13)0.0149 (15)−0.0072 (14)−0.0090 (12)
C80.0292 (12)0.0350 (13)0.0245 (10)0.0043 (12)0.0032 (10)−0.0034 (10)
C90.0298 (12)0.0319 (12)0.0206 (10)−0.0013 (11)0.0018 (9)−0.0005 (9)
C100.0307 (13)0.0358 (13)0.0216 (10)−0.0014 (12)0.0013 (10)−0.0013 (10)
C110.0317 (13)0.0333 (13)0.0274 (11)0.0096 (12)−0.0047 (10)−0.0030 (10)
C120.0292 (12)0.0357 (13)0.0241 (11)0.0052 (11)−0.0002 (9)−0.0040 (10)
C130.0250 (11)0.0285 (11)0.0232 (10)0.0002 (10)0.0019 (9)−0.0003 (9)
C140.0291 (12)0.0279 (11)0.0239 (10)0.0014 (11)0.0008 (10)−0.0006 (9)
C150.0373 (14)0.0303 (12)0.0321 (12)0.0074 (12)−0.0040 (11)−0.0021 (11)
C160.0301 (13)0.0292 (12)0.0294 (11)−0.0004 (11)−0.0035 (10)0.0016 (10)
C170.0264 (12)0.0297 (11)0.0239 (10)−0.0033 (11)0.0009 (9)0.0007 (10)
C180.0287 (12)0.0335 (13)0.0324 (12)−0.0024 (12)0.0021 (10)0.0043 (11)
C190.0386 (15)0.0549 (18)0.0278 (12)−0.0098 (15)0.0005 (11)0.0057 (13)
C200.0323 (13)0.0299 (12)0.0238 (10)−0.0023 (11)−0.0012 (10)−0.0013 (10)
C210.0382 (14)0.0466 (15)0.0277 (11)−0.0043 (14)0.0017 (11)−0.0054 (11)
C220.0319 (13)0.0337 (13)0.0306 (12)−0.0022 (12)−0.0008 (11)0.0016 (11)
C230.063 (2)0.0545 (19)0.0323 (14)−0.0132 (19)−0.0128 (15)−0.0006 (14)
C240.093 (3)0.083 (3)0.0313 (15)−0.030 (3)−0.0172 (17)0.0083 (17)

Geometric parameters (Å, °)

O1—C221.357 (3)C11—H11B0.9900
O1—C161.460 (3)C12—C131.520 (3)
O2—C221.202 (3)C12—H12A0.9900
O3—C231.342 (4)C12—H12B0.9900
O3—C31.475 (3)C13—C181.535 (3)
O4—C231.200 (4)C13—C141.542 (3)
C1—C101.535 (4)C13—C171.555 (3)
C1—C21.542 (3)C14—C151.531 (3)
C1—H1A0.9900C14—H141.0000
C1—H1B0.9900C15—C161.541 (3)
C2—C31.514 (4)C15—H15A0.9900
C2—H2A0.9900C15—H15B0.9900
C2—H2B0.9900C16—C171.543 (4)
C3—C41.508 (4)C16—H161.0000
C3—H31.0000C17—C201.534 (3)
C4—C51.545 (3)C17—H171.0000
C4—H4A0.9900C18—H18A0.9800
C4—H4B0.9900C18—H18B0.9800
C5—C61.525 (4)C18—H18C0.9800
C5—C101.549 (4)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.539 (4)C19—H19C0.9800
C6—H6A0.9900C20—C221.515 (4)
C6—H6B0.9900C20—C211.541 (3)
C7—C81.534 (4)C20—H201.0000
C7—H7A0.9900C21—H21A0.9800
C7—H7B0.9900C21—H21B0.9800
C8—C141.533 (3)C21—H21C0.9800
C8—C91.548 (3)C23—C241.510 (4)
C8—H81.0000C24—H24A0.9800
C9—C111.545 (3)C24—H24B0.9800
C9—C101.565 (3)C24—H24C0.9800
C9—H91.0000C24—H24D0.9800
C10—C191.536 (4)C24—H24E0.9800
C11—C121.541 (3)C24—H24F0.9800
C11—H11A0.9900
C22—O1—C16111.24 (19)C18—C13—C17111.6 (2)
C23—O3—C3117.3 (2)C14—C13—C1799.24 (18)
C10—C1—C2112.8 (2)C15—C14—C8119.8 (2)
C10—C1—H1A109.0C15—C14—C13103.99 (19)
C2—C1—H1A109.0C8—C14—C13113.3 (2)
C10—C1—H1B109.0C15—C14—H14106.3
C2—C1—H1B109.0C8—C14—H14106.3
H1A—C1—H1B107.8C13—C14—H14106.3
C3—C2—C1110.7 (2)C14—C15—C16102.75 (19)
C3—C2—H2A109.5C14—C15—H15A111.2
C1—C2—H2A109.5C16—C15—H15A111.2
C3—C2—H2B109.5C14—C15—H15B111.2
C1—C2—H2B109.5C16—C15—H15B111.2
H2A—C2—H2B108.1H15A—C15—H15B109.1
O3—C3—C4106.0 (2)O1—C16—C15111.9 (2)
O3—C3—C2109.0 (2)O1—C16—C17105.15 (19)
C4—C3—C2113.1 (3)C15—C16—C17107.39 (19)
O3—C3—H3109.5O1—C16—H16110.7
C4—C3—H3109.5C15—C16—H16110.7
C2—C3—H3109.5C17—C16—H16110.7
C3—C4—C5111.4 (2)C20—C17—C16103.4 (2)
C3—C4—H4A109.4C20—C17—C13119.5 (2)
C5—C4—H4A109.4C16—C17—C13103.87 (18)
C3—C4—H4B109.4C20—C17—H17109.8
C5—C4—H4B109.4C16—C17—H17109.8
H4A—C4—H4B108.0C13—C17—H17109.8
C6—C5—C4111.4 (2)C13—C18—H18A109.5
C6—C5—C10112.5 (2)C13—C18—H18B109.5
C4—C5—C10112.3 (2)H18A—C18—H18B109.5
C6—C5—H5106.7C13—C18—H18C109.5
C4—C5—H5106.7H18A—C18—H18C109.5
C10—C5—H5106.7H18B—C18—H18C109.5
C5—C6—C7111.2 (2)C10—C19—H19A109.5
C5—C6—H6A109.4C10—C19—H19B109.5
C7—C6—H6A109.4H19A—C19—H19B109.5
C5—C6—H6B109.4C10—C19—H19C109.5
C7—C6—H6B109.4H19A—C19—H19C109.5
H6A—C6—H6B108.0H19B—C19—H19C109.5
C8—C7—C6111.8 (2)C22—C20—C17103.6 (2)
C8—C7—H7A109.3C22—C20—C21108.6 (2)
C6—C7—H7A109.3C17—C20—C21112.5 (2)
C8—C7—H7B109.3C22—C20—H20110.6
C6—C7—H7B109.3C17—C20—H20110.6
H7A—C7—H7B107.9C21—C20—H20110.6
C14—C8—C7111.9 (2)C20—C21—H21A109.5
C14—C8—C9109.43 (19)C20—C21—H21B109.5
C7—C8—C9110.3 (2)H21A—C21—H21B109.5
C14—C8—H8108.4C20—C21—H21C109.5
C7—C8—H8108.4H21A—C21—H21C109.5
C9—C8—H8108.4H21B—C21—H21C109.5
C11—C9—C8112.9 (2)O2—C22—O1120.9 (2)
C11—C9—C10113.4 (2)O2—C22—C20128.7 (2)
C8—C9—C10111.22 (19)O1—C22—C20110.4 (2)
C11—C9—H9106.2O4—C23—O3124.6 (3)
C8—C9—H9106.2O4—C23—C24124.8 (3)
C10—C9—H9106.2O3—C23—C24110.6 (3)
C1—C10—C19108.6 (2)C23—C24—H24A109.5
C1—C10—C5107.3 (2)C23—C24—H24B109.5
C19—C10—C5112.4 (2)H24A—C24—H24B109.5
C1—C10—C9110.3 (2)C23—C24—H24C109.5
C19—C10—C9110.7 (2)H24A—C24—H24C109.5
C5—C10—C9107.5 (2)H24B—C24—H24C109.5
C12—C11—C9112.9 (2)C23—C24—H24D109.5
C12—C11—H11A109.0H24A—C24—H24D141.1
C9—C11—H11A109.0H24B—C24—H24D56.3
C12—C11—H11B109.0H24C—C24—H24D56.3
C9—C11—H11B109.0C23—C24—H24E109.5
H11A—C11—H11B107.8H24A—C24—H24E56.3
C13—C12—C11110.8 (2)H24B—C24—H24E141.1
C13—C12—H12A109.5H24C—C24—H24E56.3
C11—C12—H12A109.5H24D—C24—H24E109.5
C13—C12—H12B109.5C23—C24—H24F109.5
C11—C12—H12B109.5H24A—C24—H24F56.3
H12A—C12—H12B108.1H24B—C24—H24F56.3
C12—C13—C18110.31 (19)H24C—C24—H24F141.1
C12—C13—C14108.3 (2)H24D—C24—H24F109.5
C18—C13—C14113.0 (2)H24E—C24—H24F109.5
C12—C13—C17114.01 (19)
C10—C1—C2—C3−56.4 (3)C7—C8—C14—C15−57.9 (3)
C23—O3—C3—C4−160.7 (3)C9—C8—C14—C15179.6 (2)
C23—O3—C3—C277.2 (4)C7—C8—C14—C13178.7 (2)
C1—C2—C3—O3170.4 (2)C9—C8—C14—C1356.2 (3)
C1—C2—C3—C452.7 (3)C12—C13—C14—C15167.09 (19)
O3—C3—C4—C5−172.0 (2)C18—C13—C14—C15−70.4 (2)
C2—C3—C4—C5−52.6 (3)C17—C13—C14—C1547.9 (2)
C3—C4—C5—C6−177.4 (3)C12—C13—C14—C8−61.2 (3)
C3—C4—C5—C1055.4 (3)C18—C13—C14—C861.3 (3)
C4—C5—C6—C7176.4 (3)C17—C13—C14—C8179.6 (2)
C10—C5—C6—C7−56.5 (3)C8—C14—C15—C16−165.0 (2)
C5—C6—C7—C854.1 (4)C13—C14—C15—C16−37.2 (2)
C6—C7—C8—C14−177.0 (2)C22—O1—C16—C15−132.0 (2)
C6—C7—C8—C9−55.0 (3)C22—O1—C16—C17−15.7 (2)
C14—C8—C9—C11−49.6 (3)C14—C15—C16—O1126.4 (2)
C7—C8—C9—C11−173.0 (2)C14—C15—C16—C1711.5 (3)
C14—C8—C9—C10−178.4 (2)O1—C16—C17—C2024.1 (2)
C7—C8—C9—C1058.2 (3)C15—C16—C17—C20143.4 (2)
C2—C1—C10—C19−64.1 (3)O1—C16—C17—C13−101.4 (2)
C2—C1—C10—C557.6 (3)C15—C16—C17—C1317.9 (3)
C2—C1—C10—C9174.4 (2)C12—C13—C17—C2091.2 (3)
C6—C5—C10—C1176.5 (2)C18—C13—C17—C20−34.6 (3)
C4—C5—C10—C1−56.8 (3)C14—C13—C17—C20−153.9 (2)
C6—C5—C10—C19−64.2 (3)C12—C13—C17—C16−154.3 (2)
C4—C5—C10—C1962.5 (3)C18—C13—C17—C1679.8 (2)
C6—C5—C10—C957.8 (3)C14—C13—C17—C16−39.5 (2)
C4—C5—C10—C9−175.5 (2)C16—C17—C20—C22−23.4 (2)
C11—C9—C10—C156.3 (3)C13—C17—C20—C2291.3 (3)
C8—C9—C10—C1−175.2 (2)C16—C17—C20—C2193.7 (2)
C11—C9—C10—C19−63.9 (3)C13—C17—C20—C21−151.6 (2)
C8—C9—C10—C1964.6 (3)C16—O1—C22—O2−178.0 (2)
C11—C9—C10—C5173.0 (2)C16—O1—C22—C200.3 (3)
C8—C9—C10—C5−58.5 (3)C17—C20—C22—O2−166.6 (3)
C8—C9—C11—C1250.2 (3)C21—C20—C22—O273.6 (4)
C10—C9—C11—C12177.8 (2)C17—C20—C22—O115.2 (3)
C9—C11—C12—C13−54.8 (3)C21—C20—C22—O1−104.6 (2)
C11—C12—C13—C18−65.7 (3)C3—O3—C23—O45.5 (5)
C11—C12—C13—C1458.4 (3)C3—O3—C23—C24−175.0 (3)
C11—C12—C13—C17167.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O1i1.002.363.116 (3)131
C18—H18A···O10.982.583.246 (3)126

Symmetry codes: (i) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2988).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Iglesias-Arteaga, M. A. & Alvarado-Nuñes, A. A. (2006). Tetrahedron Lett.47, 5351–5353.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Novoa de Armas, H. N., Peeters, O. M., Blaton, N. M., De Ranter, C. J. D., Pomés Hernández, R. P., Mola, J. L., Serafín Pérez, C. S., Suárez García, L. S., Iglesias, M. A. & Coll Manchado, F. C. (2000). Acta Cryst. C56, 78–79. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis PhD thesis, University of Calgary, Canada.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography