PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m262.
Published online 2010 February 6. doi:  10.1107/S1600536810004204
PMCID: PMC2983677

Dichlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine)manganese(II)

Abstract

In the title complex, [MnCl2(C18H12N6)], the MnII ion is five-coordinated in an approximately square-pyramidal geometry defined by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and two Cl atoms. In the crystal, the mol­ecules are stacked in columns along the c axis and display inter­molecular π–π inter­actions between the six-membered rings, the shortest centroid–centroid distance being 3.553 (3)Å. Inter­molecular C—H(...)Cl contacts are also noted.

Related literature

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998 [triangle]). For the crystal structures of some other Mn(II)–tptz complexes, see: Hsu et al. (2006 [triangle]); Majumder et al. (2006 [triangle]); Sun et al. (2007 [triangle]); Tyagi & Singh (2009 [triangle]); Zhang et al. (2008 [triangle]); Zhao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m262-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C18H12N6)]
  • M r = 438.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m262-efi1.jpg
  • a = 8.8247 (7) Å
  • b = 10.5538 (9) Å
  • c = 10.9635 (9) Å
  • α = 66.572 (2)°
  • β = 75.812 (2)°
  • γ = 82.867 (2)°
  • V = 907.91 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 200 K
  • 0.32 × 0.13 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.856, T max = 1.000
  • 6800 measured reflections
  • 4424 independent reflections
  • 2256 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.163
  • S = 1.05
  • 4424 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004204/tk2624sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004204/tk2624Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

Since the original structure determination of 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand (Drew et al., 1998), triazine complexes, including Mn(II) derivatives, have attracted considerable interest over the years (Hsu et al., 2006; Majumder et al., 2006; Sun et al., 2007; Tyagi & Singh, 2009; Zhang et al., 2008; Zhao et al., 2007). In the title complex, [MnCl2(C18H12N6)], the MnII ion is five-coordinated in an approximately square-pyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and two Cl atoms (Fig. 1). While the Mn—Cl bond lengths are almost equal [2.3345 (16) and 2.3494 (16) Å], the Mn—N bond lengths appear to be different (Table 1). The Mn—N(pyridyl) bonds [2.303 (4) and 2.324 (4) Å] tend to be slightly longer than the Mn—N(triazine) bond (2.197 (4) Å]. The N—Mn—N chelating angles are 70.05 (13)° and 70.68 (14)°, and the Cl—Mn—Cl bond angle is 112.22 (6) °. The molecules are stacked in columns along the c axis and display intermolecular π-π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.553 (3) Å, and weak intermolecular C—H···Cl contacts (Fig. 2 and Table 2).

Experimental

To a solution of 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.25 g, 0.80 mmol) in EtOH (30 ml) was added MnCl2.4H2O (0.16 g, 0.81 mmol) and stirred for 2 h at room temperature. The formed precipitate was separated by filtration and washed with EtOH and dried under vacuum, to give a yellow powder (0.14 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
Fig. 2.
View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[MnCl2(C18H12N6)]Z = 2
Mr = 438.18F(000) = 442
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8247 (7) ÅCell parameters from 1442 reflections
b = 10.5538 (9) Åθ = 2.3–24.8°
c = 10.9635 (9) ŵ = 1.04 mm1
α = 66.572 (2)°T = 200 K
β = 75.812 (2)°Plate, yellow
γ = 82.867 (2)°0.32 × 0.13 × 0.06 mm
V = 907.91 (13) Å3

Data collection

Bruker SMART 1000 CCD diffractometer4424 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→11
Tmin = 0.856, Tmax = 1.000k = −14→12
6800 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3
4424 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.86 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.11311 (8)−0.09650 (8)0.20984 (8)0.0315 (2)
Cl11.19313 (15)−0.18383 (16)0.41816 (14)0.0489 (4)
Cl21.27174 (15)−0.17981 (15)0.05186 (14)0.0474 (4)
N10.8963 (4)0.0276 (4)0.2302 (4)0.0273 (9)
N20.7690 (4)0.2386 (4)0.2287 (4)0.0275 (9)
N30.6232 (4)0.0355 (4)0.2991 (4)0.0280 (9)
N41.1690 (4)0.1343 (4)0.1225 (4)0.0293 (10)
N50.4828 (5)0.3769 (4)0.2798 (4)0.0368 (11)
N60.9004 (5)−0.2292 (4)0.2531 (4)0.0323 (10)
C10.8958 (5)0.1617 (5)0.2043 (5)0.0251 (11)
C21.0526 (5)0.2239 (5)0.1442 (5)0.0264 (11)
C31.0755 (6)0.3612 (5)0.1080 (5)0.0311 (12)
H30.99090.42060.12660.037*
C41.2251 (6)0.4128 (5)0.0433 (5)0.0360 (13)
H41.24430.50770.01650.043*
C51.3438 (6)0.3223 (5)0.0196 (5)0.0395 (14)
H51.44650.3543−0.02510.047*
C61.3123 (6)0.1852 (5)0.0613 (5)0.0355 (13)
H61.39590.12350.04590.043*
C70.6341 (5)0.1688 (5)0.2782 (5)0.0268 (11)
C80.4833 (5)0.2407 (5)0.3123 (5)0.0284 (11)
C90.3490 (5)0.1626 (5)0.3722 (5)0.0324 (12)
H90.35370.06680.38930.039*
C100.2098 (6)0.2279 (6)0.4058 (5)0.0405 (14)
H100.11640.17740.44790.049*
C110.2074 (6)0.3662 (6)0.3781 (6)0.0446 (14)
H110.11300.41280.40280.053*
C120.3452 (6)0.4377 (6)0.3130 (6)0.0419 (14)
H120.34160.53450.29090.050*
C130.7563 (5)−0.0299 (5)0.2721 (5)0.0278 (11)
C140.7581 (5)−0.1748 (5)0.2860 (5)0.0272 (11)
C150.6218 (6)−0.2477 (5)0.3296 (5)0.0337 (12)
H150.5226−0.20550.35030.040*
C160.6351 (6)−0.3834 (6)0.3417 (6)0.0429 (14)
H160.5445−0.43730.37410.051*
C170.7807 (6)−0.4417 (6)0.3066 (6)0.0428 (14)
H170.7919−0.53480.31310.051*
C180.9087 (6)−0.3594 (5)0.2619 (5)0.0379 (13)
H181.0086−0.39770.23590.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0200 (4)0.0324 (5)0.0388 (5)0.0006 (3)−0.0039 (3)−0.0120 (4)
Cl10.0270 (8)0.0674 (11)0.0416 (8)−0.0058 (7)−0.0071 (6)−0.0086 (7)
Cl20.0349 (8)0.0593 (10)0.0476 (9)0.0063 (7)−0.0022 (6)−0.0259 (7)
N10.017 (2)0.028 (2)0.036 (2)−0.0024 (16)−0.0035 (17)−0.0133 (19)
N20.022 (2)0.029 (2)0.033 (2)−0.0064 (17)−0.0035 (17)−0.0136 (19)
N30.018 (2)0.028 (2)0.037 (2)−0.0030 (17)−0.0009 (17)−0.0132 (19)
N40.017 (2)0.032 (2)0.033 (2)−0.0043 (17)0.0016 (17)−0.0104 (19)
N50.026 (2)0.035 (3)0.052 (3)0.0091 (19)−0.012 (2)−0.020 (2)
N60.027 (2)0.028 (2)0.045 (3)0.0023 (18)−0.0091 (19)−0.017 (2)
C10.020 (3)0.019 (3)0.032 (3)−0.0023 (19)−0.002 (2)−0.007 (2)
C20.015 (2)0.031 (3)0.033 (3)−0.001 (2)−0.004 (2)−0.012 (2)
C30.028 (3)0.024 (3)0.039 (3)−0.004 (2)−0.007 (2)−0.008 (2)
C40.027 (3)0.036 (3)0.040 (3)−0.013 (2)−0.006 (2)−0.006 (2)
C50.026 (3)0.041 (4)0.042 (3)−0.009 (2)−0.005 (2)−0.007 (3)
C60.021 (3)0.039 (3)0.041 (3)−0.002 (2)0.001 (2)−0.014 (3)
C70.021 (3)0.029 (3)0.030 (3)−0.001 (2)−0.005 (2)−0.012 (2)
C80.024 (3)0.030 (3)0.030 (3)0.000 (2)−0.006 (2)−0.010 (2)
C90.023 (3)0.036 (3)0.034 (3)−0.001 (2)−0.005 (2)−0.009 (2)
C100.024 (3)0.054 (4)0.037 (3)0.004 (3)−0.005 (2)−0.014 (3)
C110.032 (3)0.059 (4)0.044 (3)0.014 (3)−0.015 (3)−0.022 (3)
C120.045 (4)0.040 (3)0.050 (4)0.010 (3)−0.020 (3)−0.023 (3)
C130.018 (3)0.033 (3)0.030 (3)−0.007 (2)−0.002 (2)−0.009 (2)
C140.024 (3)0.026 (3)0.033 (3)−0.003 (2)−0.006 (2)−0.012 (2)
C150.026 (3)0.035 (3)0.040 (3)−0.006 (2)−0.003 (2)−0.015 (3)
C160.042 (4)0.036 (3)0.053 (4)−0.015 (3)−0.004 (3)−0.017 (3)
C170.045 (4)0.032 (3)0.052 (4)−0.008 (3)−0.005 (3)−0.018 (3)
C180.041 (3)0.027 (3)0.052 (4)0.006 (2)−0.012 (3)−0.022 (3)

Geometric parameters (Å, °)

Mn1—N12.197 (4)C4—H40.9500
Mn1—N42.303 (4)C5—C61.376 (7)
Mn1—N62.324 (4)C5—H50.9500
Mn1—Cl22.3345 (16)C6—H60.9500
Mn1—Cl12.3494 (16)C7—C81.490 (6)
N1—C11.329 (6)C8—C91.395 (6)
N1—C131.339 (5)C9—C101.375 (7)
N2—C11.335 (6)C9—H90.9500
N2—C71.355 (5)C10—C111.367 (7)
N3—C131.317 (6)C10—H100.9500
N3—C71.345 (6)C11—C121.390 (7)
N4—C61.343 (5)C11—H110.9500
N4—C21.351 (6)C12—H120.9500
N5—C81.336 (6)C13—C141.474 (6)
N5—C121.339 (6)C14—C151.386 (6)
N6—C181.332 (6)C15—C161.378 (7)
N6—C141.342 (6)C15—H150.9500
C1—C21.488 (6)C16—C171.388 (7)
C2—C31.369 (6)C16—H160.9500
C3—C41.398 (6)C17—C181.380 (7)
C3—H30.9500C17—H170.9500
C4—C51.375 (7)C18—H180.9500
N1—Mn1—N470.05 (13)N4—C6—H6118.4
N1—Mn1—N670.68 (14)C5—C6—H6118.4
N4—Mn1—N6137.65 (14)N3—C7—N2124.9 (4)
N1—Mn1—Cl2139.00 (11)N3—C7—C8115.2 (4)
N4—Mn1—Cl2104.03 (11)N2—C7—C8119.9 (4)
N6—Mn1—Cl295.27 (11)N5—C8—C9123.6 (5)
N1—Mn1—Cl1108.53 (11)N5—C8—C7118.4 (4)
N4—Mn1—Cl1103.39 (11)C9—C8—C7118.0 (4)
N6—Mn1—Cl1103.49 (11)C10—C9—C8118.3 (5)
Cl2—Mn1—Cl1112.22 (6)C10—C9—H9120.9
C1—N1—C13116.3 (4)C8—C9—H9120.9
C1—N1—Mn1122.6 (3)C11—C10—C9119.2 (5)
C13—N1—Mn1121.1 (3)C11—C10—H10120.4
C1—N2—C7113.9 (4)C9—C10—H10120.4
C13—N3—C7115.7 (4)C10—C11—C12118.9 (5)
C6—N4—C2117.2 (4)C10—C11—H11120.5
C6—N4—Mn1124.6 (3)C12—C11—H11120.5
C2—N4—Mn1117.9 (3)N5—C12—C11123.3 (5)
C8—N5—C12116.7 (4)N5—C12—H12118.3
C18—N6—C14117.5 (4)C11—C12—H12118.3
C18—N6—Mn1125.3 (3)N3—C13—N1123.9 (5)
C14—N6—Mn1116.8 (3)N3—C13—C14120.5 (4)
N1—C1—N2125.0 (4)N1—C13—C14115.6 (4)
N1—C1—C2114.3 (4)N6—C14—C15123.3 (5)
N2—C1—C2120.8 (4)N6—C14—C13114.9 (4)
N4—C2—C3123.0 (4)C15—C14—C13121.8 (4)
N4—C2—C1114.0 (4)C16—C15—C14117.7 (5)
C3—C2—C1122.9 (4)C16—C15—H15121.1
C2—C3—C4119.1 (5)C14—C15—H15121.1
C2—C3—H3120.5C15—C16—C17120.2 (5)
C4—C3—H3120.5C15—C16—H16119.9
C5—C4—C3118.2 (5)C17—C16—H16119.9
C5—C4—H4120.9C18—C17—C16117.4 (5)
C3—C4—H4120.9C18—C17—H17121.3
C4—C5—C6119.4 (5)C16—C17—H17121.3
C4—C5—H5120.3N6—C18—C17123.8 (5)
C6—C5—H5120.3N6—C18—H18118.1
N4—C6—C5123.1 (5)C17—C18—H18118.1
N4—Mn1—N1—C1−8.9 (3)C3—C4—C5—C6−0.8 (8)
N6—Mn1—N1—C1−172.7 (4)C2—N4—C6—C5−0.6 (7)
Cl2—Mn1—N1—C1−97.5 (4)Mn1—N4—C6—C5−174.8 (4)
Cl1—Mn1—N1—C189.0 (4)C4—C5—C6—N41.3 (8)
N4—Mn1—N1—C13172.3 (4)C13—N3—C7—N22.1 (7)
N6—Mn1—N1—C138.4 (3)C13—N3—C7—C8−178.6 (4)
Cl2—Mn1—N1—C1383.7 (4)C1—N2—C7—N3−1.6 (7)
Cl1—Mn1—N1—C13−89.8 (4)C1—N2—C7—C8179.0 (4)
N1—Mn1—N4—C6−176.4 (4)C12—N5—C8—C92.8 (7)
N6—Mn1—N4—C6−153.5 (4)C12—N5—C8—C7−179.5 (4)
Cl2—Mn1—N4—C6−39.0 (4)N3—C7—C8—N5−172.6 (4)
Cl1—Mn1—N4—C678.4 (4)N2—C7—C8—N56.8 (7)
N1—Mn1—N4—C29.4 (3)N3—C7—C8—C95.2 (6)
N6—Mn1—N4—C232.4 (4)N2—C7—C8—C9−175.4 (4)
Cl2—Mn1—N4—C2146.9 (3)N5—C8—C9—C10−3.3 (7)
Cl1—Mn1—N4—C2−95.7 (3)C7—C8—C9—C10179.0 (4)
N1—Mn1—N6—C18178.9 (4)C8—C9—C10—C110.8 (7)
N4—Mn1—N6—C18156.1 (4)C9—C10—C11—C121.8 (8)
Cl2—Mn1—N6—C1838.5 (4)C8—N5—C12—C110.1 (7)
Cl1—Mn1—N6—C18−75.9 (4)C10—C11—C12—N5−2.4 (8)
N1—Mn1—N6—C14−8.5 (3)C7—N3—C13—N11.9 (7)
N4—Mn1—N6—C14−31.4 (5)C7—N3—C13—C14−177.6 (4)
Cl2—Mn1—N6—C14−148.9 (3)C1—N1—C13—N3−5.8 (7)
Cl1—Mn1—N6—C1496.7 (3)Mn1—N1—C13—N3173.0 (4)
C13—N1—C1—N26.4 (7)C1—N1—C13—C14173.7 (4)
Mn1—N1—C1—N2−172.5 (4)Mn1—N1—C13—C14−7.5 (5)
C13—N1—C1—C2−173.8 (4)C18—N6—C14—C150.8 (7)
Mn1—N1—C1—C27.3 (5)Mn1—N6—C14—C15−172.4 (4)
C7—N2—C1—N1−2.8 (7)C18—N6—C14—C13−179.0 (4)
C7—N2—C1—C2177.4 (4)Mn1—N6—C14—C137.8 (5)
C6—N4—C2—C3−0.7 (7)N3—C13—C14—N6178.8 (4)
Mn1—N4—C2—C3173.9 (4)N1—C13—C14—N6−0.7 (6)
C6—N4—C2—C1176.3 (4)N3—C13—C14—C15−1.0 (7)
Mn1—N4—C2—C1−9.1 (5)N1—C13—C14—C15179.5 (4)
N1—C1—C2—N41.6 (6)N6—C14—C15—C161.3 (8)
N2—C1—C2—N4−178.5 (4)C13—C14—C15—C16−178.9 (4)
N1—C1—C2—C3178.6 (4)C14—C15—C16—C17−2.1 (8)
N2—C1—C2—C3−1.6 (7)C15—C16—C17—C180.9 (8)
N4—C2—C3—C41.2 (7)C14—N6—C18—C17−2.1 (8)
C1—C2—C3—C4−175.5 (4)Mn1—N6—C18—C17170.4 (4)
C2—C3—C4—C5−0.4 (7)C16—C17—C18—N61.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.952.773.594 (5)145
C15—H15···Cl1ii0.952.823.714 (5)157

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2624).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985–987.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hsu, G.-Y., Misra, P., Cheng, S.-C., Wei, H.-H. & Mohanta, S. (2006). Polyhedron, 25, 3393–3398.
  • Majumder, A., Pilet, G., Rodriguez, M. T. G. & Misra, P. (2006). Polyhedron, 25, 2550–2558.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, X.-P., Gu, W. & Liu, X. (2007). Acta Cryst. E63, m1027–m1028.
  • Tyagi, P. & Singh, U. P. (2009). J. Coord. Chem.62, 1613–1622.
  • Zhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr.38, 601–604.
  • Zhao, H., Shatruk, M., Prosvirin, A. V. & Dunbar, K. R. (2007). Chem. Eur. J.13, 6573–6589. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography