PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m290.
Published online 2010 February 13. doi:  10.1107/S1600536810004964
PMCID: PMC2983676

Tetra­kis(1-ethyl-1H-imidazole-κN 3)bis­(thio­cyanato-κN)cadmium(II)

Abstract

The structure of the title compound, [Cd(NCS)2(C5H8N2)4], consists of isolated mol­ecules of [Cd(NCS)2(Eim)4] (Eim = 1-ethyl­imidazole), which contain a compressed octa­hedral CdN6 chromophore. The NCS anions are trans and four N atoms from the 1-ethyl­imidazole ligands define the equatorial plane. The mean Cd—N(Eim) and Cd—N(NCS) distances are 2.334 (4) and 2.379 (5) Å, respectively. Weak C—H(...)N inter­actions contribute to the crystal packing stability.

Related literature

In the related cadmium compound [Cd(NCS)2(1-vinyl­imidazole)4], the CdII ions have a distorted octa­hedral environment, see: Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m290-scheme1.jpg

Experimental

Crystal data

  • [Cd(NCS)2(C5H8N2)4]
  • M r = 613.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m290-efi1.jpg
  • a = 9.0580 (18) Å
  • b = 13.532 (3) Å
  • c = 13.571 (3) Å
  • α = 69.45 (3)°
  • β = 70.88 (3)°
  • γ = 89.02 (3)°
  • V = 1462.6 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 293 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.770, T max = 0.838
  • 6087 measured reflections
  • 5708 independent reflections
  • 4412 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.150
  • S = 1.00
  • 5708 reflections
  • 321 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004964/hg2644sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004964/hg2644Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSF of China (No. 20871072) and the Doctoral Science Foundation of Shandong Province (No. 2007BS04023).

supplementary crystallographic information

Comment

The molecular structure of (I) is shown in Fig. 1. The Cd atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-ethylimidazole ligands. The equatorial plane of the complex is formed by four Cd—N(1-ethylimadazole) bonds with lengths ranging from 2.331 (4) to 2.339 (4) Å, and the axial positions are occupied by two N-bonded NCS groups [Cd—N(NCS) = 2.369 (5) and 2.389 (4) Å]. These values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Liu et al., 2007). The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry, the largest angular deviation being observed for the N3—Cd1—N9 angle [94.22 (12)°]. The thiocyanate ligands are almost linear. Weak C—H···N interactions contribute to the crystal packing stability.

In the corresponding cadmium compound [Cd(NCS)2(1-vinylimidazole)4] (Liu, et al., 2007), the CdII ions have a distorted octahedral environment.

Experimental

The title compound was prepared by the reaction of 1-ethylimidazole (1.92 g, 20 mmol) with CdCl2.0.5H2O(1.14 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement

H atoms were positioned geometrically(C—H = 0.93-0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The packing of (I), viewed down the a axis.

Crystal data

[Cd(NCS)2(C5H8N2)4]Z = 2
Mr = 613.13F(000) = 628
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0580 (18) ÅCell parameters from 3229 reflections
b = 13.532 (3) Åθ = 1.6–26.0°
c = 13.571 (3) ŵ = 0.92 mm1
α = 69.45 (3)°T = 293 K
β = 70.88 (3)°Block, colorless
γ = 89.02 (3)°0.30 × 0.30 × 0.20 mm
V = 1462.6 (7) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer5708 independent reflections
Radiation source: fine-focus sealed tube4412 reflections with I > 2σ(I)
graphiteRint = 0.024
thin–slice ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = 0→11
Tmin = 0.770, Tmax = 0.838k = −16→16
6087 measured reflectionsl = −15→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.150w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5708 reflectionsΔρmax = 0.87 e Å3
321 parametersΔρmin = −0.85 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.69564 (4)0.74519 (2)0.74788 (3)0.05176 (18)
S10.8813 (2)0.38753 (12)0.83690 (15)0.0894 (5)
S20.5096 (2)1.10420 (12)0.64503 (16)0.0908 (5)
N70.9399 (5)0.8103 (3)0.7377 (3)0.0619 (10)
N30.4588 (5)0.6765 (3)0.7552 (3)0.0598 (10)
N50.8071 (5)0.7265 (3)0.5749 (3)0.0589 (9)
N81.1286 (5)0.8430 (3)0.7960 (3)0.0577 (9)
N40.2773 (5)0.6417 (4)0.6931 (4)0.0695 (11)
N10.7430 (6)0.5694 (4)0.8445 (4)0.0744 (12)
C10.7999 (5)0.4933 (4)0.8406 (4)0.0549 (10)
N90.5902 (5)0.7659 (3)0.9200 (3)0.0600 (9)
N20.6550 (6)0.9207 (4)0.6501 (4)0.0780 (12)
C20.5964 (6)0.9977 (4)0.6467 (4)0.0578 (11)
C130.9874 (6)0.7894 (4)0.8245 (4)0.0640 (12)
H13A0.93040.74330.89660.077*
N60.9110 (5)0.7726 (3)0.3931 (3)0.0664 (11)
C200.5788 (7)0.8579 (4)0.9399 (5)0.0712 (13)
H20A0.59140.92550.88580.085*
C151.0593 (6)0.8803 (4)0.6491 (4)0.0647 (12)
H15A1.05930.91070.57610.078*
C180.5643 (6)0.6902 (4)1.0195 (4)0.0661 (12)
H18A0.56540.61831.03130.079*
C80.8485 (7)0.8045 (4)0.4788 (4)0.0689 (13)
H8A0.83590.87490.47070.083*
C100.8447 (7)0.6377 (4)0.5496 (4)0.0682 (13)
H10A0.82780.56870.60170.082*
C50.3418 (7)0.6026 (4)0.8429 (5)0.0692 (13)
H5A0.33980.57300.91640.083*
C141.1764 (6)0.8981 (4)0.6839 (4)0.0668 (13)
H14A1.27160.94010.63960.080*
C90.9098 (7)0.6655 (4)0.4379 (4)0.0740 (15)
H9A0.94650.62050.39900.089*
C40.2306 (7)0.5801 (4)0.8049 (5)0.0761 (15)
H4A0.14040.53230.84650.091*
C30.4137 (6)0.6964 (4)0.6684 (4)0.0676 (13)
H3A0.47090.74370.59700.081*
N100.5365 (5)0.7290 (4)1.1004 (3)0.0689 (11)
C161.2126 (7)0.8384 (5)0.8732 (5)0.0717 (14)
H16A1.20210.76560.92420.086*
H16B1.32350.86030.83050.086*
C60.1968 (8)0.6455 (6)0.6151 (6)0.094 (2)
H6A0.09070.61040.65730.113*
H6B0.18930.71910.57380.113*
C190.5463 (7)0.8359 (5)1.0506 (5)0.0770 (15)
H19A0.53320.88491.08580.092*
C110.9731 (8)0.8412 (5)0.2743 (4)0.0855 (18)
H11A0.97490.79910.22910.103*
H11B0.90320.89530.25930.103*
C70.2747 (9)0.5958 (6)0.5366 (6)0.112 (2)
H7A0.23650.61830.47490.168*
H7B0.25350.52000.57330.168*
H7C0.38600.61590.50940.168*
C171.1544 (10)0.9058 (6)0.9382 (6)0.108 (2)
H17A1.19840.88980.99680.162*
H17B1.04180.89280.97060.162*
H17C1.18460.97900.89010.162*
C210.5084 (9)0.6655 (6)1.2194 (5)0.101 (2)
H21A0.41950.68861.26590.121*
H21B0.48250.59141.23360.121*
C220.6465 (10)0.6764 (7)1.2495 (7)0.124 (3)
H22A0.62310.63721.32800.186*
H22B0.67430.75001.23320.186*
H22C0.73270.64921.20710.186*
C121.1279 (9)0.8917 (6)0.2418 (6)0.128 (3)
H12A1.16160.93740.16430.192*
H12B1.19890.83870.25240.192*
H12C1.12720.93290.28680.192*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0538 (2)0.0523 (2)0.0494 (2)0.00817 (14)−0.01671 (15)−0.01999 (15)
S10.0938 (11)0.0607 (8)0.0959 (11)0.0180 (8)−0.0099 (9)−0.0294 (8)
S20.1011 (12)0.0581 (8)0.1125 (12)0.0222 (8)−0.0405 (10)−0.0274 (8)
N70.056 (2)0.067 (2)0.060 (2)0.0033 (19)−0.0172 (19)−0.022 (2)
N30.060 (2)0.061 (2)0.060 (2)0.0050 (19)−0.0202 (19)−0.0252 (19)
N50.065 (2)0.061 (2)0.051 (2)0.0095 (19)−0.0187 (18)−0.0218 (18)
N80.055 (2)0.064 (2)0.056 (2)0.0100 (18)−0.0183 (18)−0.0246 (19)
N40.059 (2)0.088 (3)0.074 (3)0.008 (2)−0.025 (2)−0.042 (2)
N10.083 (3)0.067 (3)0.068 (3)0.023 (2)−0.024 (2)−0.021 (2)
C10.054 (3)0.051 (3)0.046 (2)−0.002 (2)−0.0098 (19)−0.0088 (19)
N90.059 (2)0.065 (2)0.057 (2)0.0081 (18)−0.0157 (18)−0.0280 (19)
N20.092 (3)0.064 (3)0.080 (3)0.023 (2)−0.036 (3)−0.024 (2)
C20.065 (3)0.050 (3)0.051 (2)−0.002 (2)−0.021 (2)−0.008 (2)
C130.062 (3)0.069 (3)0.057 (3)0.003 (2)−0.021 (2)−0.016 (2)
N60.081 (3)0.064 (3)0.051 (2)0.000 (2)−0.019 (2)−0.0190 (19)
C200.081 (4)0.064 (3)0.070 (3)0.010 (3)−0.020 (3)−0.030 (3)
C150.065 (3)0.064 (3)0.057 (3)−0.001 (2)−0.020 (2)−0.013 (2)
C180.070 (3)0.069 (3)0.060 (3)0.008 (2)−0.022 (2)−0.024 (3)
C80.096 (4)0.054 (3)0.056 (3)0.010 (3)−0.025 (3)−0.021 (2)
C100.085 (4)0.059 (3)0.060 (3)0.003 (3)−0.023 (3)−0.022 (2)
C50.075 (3)0.061 (3)0.068 (3)0.005 (3)−0.021 (3)−0.021 (2)
C140.062 (3)0.063 (3)0.069 (3)−0.004 (2)−0.022 (3)−0.017 (2)
C90.094 (4)0.074 (4)0.064 (3)0.017 (3)−0.026 (3)−0.038 (3)
C40.069 (3)0.071 (3)0.080 (4)−0.004 (3)−0.018 (3)−0.025 (3)
C30.056 (3)0.083 (4)0.063 (3)0.004 (3)−0.020 (2)−0.028 (3)
N100.068 (3)0.086 (3)0.054 (2)0.006 (2)−0.019 (2)−0.028 (2)
C160.067 (3)0.079 (4)0.083 (4)0.014 (3)−0.039 (3)−0.034 (3)
C60.078 (4)0.134 (6)0.104 (5)0.023 (4)−0.046 (4)−0.070 (5)
C190.086 (4)0.082 (4)0.074 (4)0.015 (3)−0.024 (3)−0.044 (3)
C110.101 (5)0.097 (4)0.048 (3)0.001 (4)−0.019 (3)−0.021 (3)
C70.123 (6)0.141 (7)0.108 (5)0.023 (5)−0.056 (5)−0.072 (5)
C170.141 (7)0.128 (6)0.101 (5)0.049 (5)−0.075 (5)−0.066 (5)
C210.114 (6)0.134 (6)0.051 (3)0.016 (5)−0.027 (3)−0.030 (4)
C220.134 (7)0.160 (8)0.119 (6)0.065 (6)−0.075 (6)−0.071 (6)
C120.121 (6)0.144 (7)0.087 (5)−0.055 (5)−0.006 (4)−0.028 (5)

Geometric parameters (Å, °)

Cd1—N32.311 (4)C10—C91.345 (7)
Cd1—N92.331 (4)C10—H10A0.9300
Cd1—N52.334 (4)C5—C41.354 (8)
Cd1—N72.339 (4)C5—H5A0.9300
Cd1—N22.370 (5)C14—H14A0.9300
Cd1—N12.389 (4)C9—H9A0.9300
S1—C11.608 (5)C4—H4A0.9300
S2—C21.627 (5)C3—H3A0.9300
N7—C131.322 (6)N10—C191.356 (7)
N7—C151.377 (6)N10—C211.474 (7)
N3—C31.310 (6)C16—C171.460 (8)
N3—C51.383 (7)C16—H16A0.9700
N5—C81.296 (6)C16—H16B0.9700
N5—C101.371 (6)C6—C71.442 (8)
N8—C131.350 (6)C6—H6A0.9700
N8—C141.357 (6)C6—H6B0.9700
N8—C161.467 (6)C19—H19A0.9300
N4—C31.331 (7)C11—C121.429 (9)
N4—C41.371 (7)C11—H11A0.9700
N4—C61.457 (7)C11—H11B0.9700
N1—C11.154 (6)C7—H7A0.9600
N9—C181.326 (6)C7—H7B0.9600
N9—C201.359 (6)C7—H7C0.9600
N2—C21.154 (6)C17—H17A0.9600
C13—H13A0.9300C17—H17B0.9600
N6—C81.332 (6)C17—H17C0.9600
N6—C91.359 (6)C21—C221.462 (10)
N6—C111.467 (6)C21—H21A0.9700
C20—C191.354 (7)C21—H21B0.9700
C20—H20A0.9300C22—H22A0.9600
C15—C141.350 (7)C22—H22B0.9600
C15—H15A0.9300C22—H22C0.9600
C18—N101.328 (6)C12—H12A0.9600
C18—H18A0.9300C12—H12B0.9600
C8—H8A0.9300C12—H12C0.9600
N3—Cd1—N994.24 (14)C10—C9—N6106.3 (5)
N3—Cd1—N587.15 (14)C10—C9—H9A126.8
N9—Cd1—N5178.61 (13)N6—C9—H9A126.8
N3—Cd1—N7177.92 (13)C5—C4—N4106.5 (5)
N9—Cd1—N787.36 (14)C5—C4—H4A126.8
N5—Cd1—N791.26 (14)N4—C4—H4A126.8
N3—Cd1—N292.07 (17)N3—C3—N4112.9 (5)
N9—Cd1—N291.78 (16)N3—C3—H3A123.5
N5—Cd1—N288.03 (16)N4—C3—H3A123.5
N7—Cd1—N289.21 (17)C18—N10—C19106.4 (4)
N3—Cd1—N189.13 (16)C18—N10—C21125.2 (5)
N9—Cd1—N188.71 (15)C19—N10—C21128.3 (5)
N5—Cd1—N191.45 (15)C17—C16—N8112.9 (5)
N7—Cd1—N189.58 (16)C17—C16—H16A109.0
N2—Cd1—N1178.67 (16)N8—C16—H16A109.0
C13—N7—C15104.6 (4)C17—C16—H16B109.0
C13—N7—Cd1124.5 (3)N8—C16—H16B109.0
C15—N7—Cd1130.9 (3)H16A—C16—H16B107.8
C3—N3—C5104.7 (4)C7—C6—N4113.2 (6)
C3—N3—Cd1124.5 (3)C7—C6—H6A108.9
C5—N3—Cd1130.6 (4)N4—C6—H6A108.9
C8—N5—C10104.9 (4)C7—C6—H6B108.9
C8—N5—Cd1124.6 (3)N4—C6—H6B108.9
C10—N5—Cd1130.5 (3)H6A—C6—H6B107.7
C13—N8—C14106.6 (4)C20—C19—N10107.0 (5)
C13—N8—C16125.4 (4)C20—C19—H19A126.5
C14—N8—C16128.0 (4)N10—C19—H19A126.5
C3—N4—C4106.5 (4)C12—C11—N6112.7 (6)
C3—N4—C6126.2 (5)C12—C11—H11A109.0
C4—N4—C6127.3 (5)N6—C11—H11A109.0
C1—N1—Cd1148.8 (4)C12—C11—H11B109.0
N1—C1—S1178.7 (5)N6—C11—H11B109.0
C18—N9—C20104.9 (4)H11A—C11—H11B107.8
C18—N9—Cd1125.6 (3)C6—C7—H7A109.5
C20—N9—Cd1127.8 (3)C6—C7—H7B109.5
C2—N2—Cd1152.1 (4)H7A—C7—H7B109.5
N2—C2—S2178.3 (5)C6—C7—H7C109.5
N7—C13—N8112.0 (4)H7A—C7—H7C109.5
N7—C13—H13A124.0H7B—C7—H7C109.5
N8—C13—H13A124.0C16—C17—H17A109.5
C8—N6—C9106.5 (4)C16—C17—H17B109.5
C8—N6—C11126.1 (5)H17A—C17—H17B109.5
C9—N6—C11127.4 (5)C16—C17—H17C109.5
C19—C20—N9109.4 (5)H17A—C17—H17C109.5
C19—C20—H20A125.3H17B—C17—H17C109.5
N9—C20—H20A125.3C22—C21—N10111.3 (7)
C14—C15—N7109.9 (5)C22—C21—H21A109.4
C14—C15—H15A125.0N10—C21—H21A109.4
N7—C15—H15A125.0C22—C21—H21B109.4
N9—C18—N10112.2 (5)N10—C21—H21B109.4
N9—C18—H18A123.9H21A—C21—H21B108.0
N10—C18—H18A123.9C21—C22—H22A109.5
N5—C8—N6112.6 (4)C21—C22—H22B109.5
N5—C8—H8A123.7H22A—C22—H22B109.5
N6—C8—H8A123.7C21—C22—H22C109.5
C9—C10—N5109.6 (5)H22A—C22—H22C109.5
C9—C10—H10A125.2H22B—C22—H22C109.5
N5—C10—H10A125.2C11—C12—H12A109.5
C4—C5—N3109.4 (5)C11—C12—H12B109.5
C4—C5—H5A125.3H12A—C12—H12B109.5
N3—C5—H5A125.3C11—C12—H12C109.5
C15—C14—N8106.9 (5)H12A—C12—H12C109.5
C15—C14—H14A126.6H12B—C12—H12C109.5
N8—C14—H14A126.6
N3—Cd1—N7—C13−103 (4)N5—Cd1—N2—C2163.7 (10)
N9—Cd1—N7—C1336.8 (4)N7—Cd1—N2—C2−105.1 (10)
N5—Cd1—N7—C13−143.4 (4)N1—Cd1—N2—C2−129 (6)
N2—Cd1—N7—C13128.6 (4)Cd1—N2—C2—S2−23 (18)
N1—Cd1—N7—C13−51.9 (4)C15—N7—C13—N80.7 (6)
N3—Cd1—N7—C1581 (4)Cd1—N7—C13—N8−175.8 (3)
N9—Cd1—N7—C15−138.7 (4)C14—N8—C13—N7−2.3 (6)
N5—Cd1—N7—C1541.1 (4)C16—N8—C13—N7179.1 (4)
N2—Cd1—N7—C15−46.9 (4)C18—N9—C20—C190.0 (6)
N1—Cd1—N7—C15132.6 (4)Cd1—N9—C20—C19−165.4 (4)
N9—Cd1—N3—C3142.9 (4)C13—N7—C15—C141.2 (6)
N5—Cd1—N3—C3−36.9 (4)Cd1—N7—C15—C14177.4 (3)
N7—Cd1—N3—C3−77 (4)C20—N9—C18—N100.4 (6)
N2—Cd1—N3—C351.0 (4)Cd1—N9—C18—N10166.2 (3)
N1—Cd1—N3—C3−128.4 (4)C10—N5—C8—N6−0.4 (6)
N9—Cd1—N3—C5−42.8 (4)Cd1—N5—C8—N6179.1 (3)
N5—Cd1—N3—C5137.4 (4)C9—N6—C8—N5−0.1 (7)
N7—Cd1—N3—C597 (4)C11—N6—C8—N5−178.3 (5)
N2—Cd1—N3—C5−134.7 (4)C8—N5—C10—C90.7 (6)
N1—Cd1—N3—C545.9 (4)Cd1—N5—C10—C9−178.8 (4)
N3—Cd1—N5—C8105.4 (4)C3—N3—C5—C40.5 (6)
N9—Cd1—N5—C8−69 (5)Cd1—N3—C5—C4−174.7 (4)
N7—Cd1—N5—C8−76.0 (4)N7—C15—C14—N8−2.6 (6)
N2—Cd1—N5—C813.2 (4)C13—N8—C14—C153.0 (6)
N1—Cd1—N5—C8−165.6 (4)C16—N8—C14—C15−178.6 (5)
N3—Cd1—N5—C10−75.3 (5)N5—C10—C9—N6−0.7 (7)
N9—Cd1—N5—C10111 (5)C8—N6—C9—C100.5 (6)
N7—Cd1—N5—C10103.4 (5)C11—N6—C9—C10178.7 (5)
N2—Cd1—N5—C10−167.4 (5)N3—C5—C4—N4−1.0 (6)
N1—Cd1—N5—C1013.8 (5)C3—N4—C4—C51.0 (6)
N3—Cd1—N1—C195.1 (8)C6—N4—C4—C5179.7 (5)
N9—Cd1—N1—C1−170.6 (9)C5—N3—C3—N40.2 (6)
N5—Cd1—N1—C18.0 (9)Cd1—N3—C3—N4175.7 (3)
N7—Cd1—N1—C1−83.3 (8)C4—N4—C3—N3−0.8 (6)
N2—Cd1—N1—C1−59 (6)C6—N4—C3—N3−179.4 (5)
Cd1—N1—C1—S1122 (22)N9—C18—N10—C19−0.6 (6)
N3—Cd1—N9—C1882.4 (4)N9—C18—N10—C21−178.0 (5)
N5—Cd1—N9—C18−103 (5)C13—N8—C16—C17−80.3 (7)
N7—Cd1—N9—C18−96.3 (4)C14—N8—C16—C17101.5 (7)
N2—Cd1—N9—C18174.6 (4)C3—N4—C6—C770.8 (9)
N1—Cd1—N9—C18−6.7 (4)C4—N4—C6—C7−107.5 (7)
N3—Cd1—N9—C20−115.1 (4)N9—C20—C19—N10−0.3 (7)
N5—Cd1—N9—C2059 (5)C18—N10—C19—C200.5 (6)
N7—Cd1—N9—C2066.2 (4)C21—N10—C19—C20177.9 (6)
N2—Cd1—N9—C20−22.9 (4)C8—N6—C11—C1279.8 (9)
N1—Cd1—N9—C20155.9 (4)C9—N6—C11—C12−98.2 (8)
N3—Cd1—N2—C276.6 (10)C18—N10—C21—C22104.3 (7)
N9—Cd1—N2—C2−17.7 (10)C19—N10—C21—C22−72.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18A···N10.932.813.324 (8)116
C8—H8A···N20.932.723.279 (8)119
C3—H3A···N50.932.973.346 (7)106
C5—H5A···N1i0.932.983.873 (8)162

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2644).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, G. Y., Chen, H. N., Liu, F. Q., Li, S. X., Li, R. X. & Huang, S. Y. (2007). Chin. J. Inorg. Chem.23, 1085–1088.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography