PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m316–m317.
Published online 2010 February 20. doi:  10.1107/S1600536810006306
PMCID: PMC2983669

Diaquabis­[3-(hydroxy­imino­)butanoato]nickel(II): a triclinic polymorph

Abstract

The title centrosymmetric mononuclear complex, [Ni(C4H6NO3)2(H2O)2], is a polymorph of the previously reported complex [Dudarenko et al. (2010 [triangle]). Acta Cryst. E66, m277–m278]. The NiII atom, lying on an inversion center, is six-coordinated by two carboxyl­ate O atoms and two oxime N atoms from two trans-disposed chelating 3-hydroxy­imino­butanoate ligands and two axial water mol­ecules in a distorted octa­hedral geometry. The hydr­oxy group forms an intra­molecular hydrogen bond with the coordinated carboxyl­ate O atom. The complex mol­ecules are linked in stacks along [010] by a hydrogen bond between the water O atom and the carboxyl­ate O atom of a neighboring mol­ecule. The stacks are further linked by O—H(...)O hydrogen bonds into a layer parallel to (001).

Related literature

For the monoclinic polymorph of the title compound, see: Dudarenko et al. (2010 [triangle]). For the coordination chemistry of hydroxy­imino­carboxylic acids and their derivatives, see: Duda et al. (1997 [triangle]); Mokhir et al. (2002 [triangle]); Moroz et al. (2008 [triangle]); Onindo et al. (1995 [triangle]). For 2-hydroxy­imino­carboxylic acids as efficient metal chelators, see: Gumienna-Kontecka et al. (2000 [triangle]); Sliva et al. (1997a [triangle],b [triangle]). For the use of 2-hydroxy­imino­carboxylic acid derivatives as efficient ligands for stabilization of high oxidation states of transitional metals, see: Fritsky et al. (2006 [triangle]); Kanderal et al. (2005 [triangle]). For structures with monodentately coordinated carboxyl­ate groups, see: Wörl et al. (2005a [triangle],b [triangle]). For the ligand synthesis, see: Khromov (1950 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m316-scheme1.jpg

Experimental

Crystal data

  • [Ni(C4H6NO3)2(H2O)2]
  • M r = 326.92
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m316-efi1.jpg
  • a = 5.5621 (14) Å
  • b = 7.340 (2) Å
  • c = 8.2979 (15) Å
  • α = 90.71 (2)°
  • β = 92.290 (18)°
  • γ = 112.18 (2)°
  • V = 313.31 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.59 mm−1
  • T = 120 K
  • 0.22 × 0.14 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.764, T max = 0.856
  • 2755 measured reflections
  • 1223 independent reflections
  • 1054 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.083
  • S = 0.98
  • 1223 reflections
  • 101 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006306/hy2284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006306/hy2284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

supplementary crystallographic information

Comment

2-Hydroxyiminocarboxylates of various metal ions are an interesting group of chelate complexes intensively studied during the past 15 years (Duda et al., 1997; Onindo et al., 1995). It was shown that 2-hydroxyiminopropanoic acid and other 2-hydroxyiminocarboxylic acids act as efficient chelators with respect to copper(II), nickel(II) and aluminium(III) (Gumienna-Kontecka et al., 2000; Onindo et al., 1995; Sliva et al., 1997a,b). The amide derivatives of 2-hydroxyiminopropanoic acid have been successfully used for the synthesis of metal complexes with efficient stabilization of trivalent oxidation state of Ni and Cu (Fritsky et al., 2006; Kanderal et al., 2005). Recently we reported the first crystal structure of a metal compound of the nearest homologue of 2-hydroxyiminopropanoic acid, 3-hydroxyiminobutanoic acid, a mononuclear complex with Ni (Dudarenko et al., 2010). In the course of our synthetic study we found that a slight change of experimental conditions, namely use of nickel(II) sulfate instead of nickel(II) nitrate and conduction of synthesis at room temperature resulted in crystallization of a polymorph modification of the title compound.

A distorted octahedral coordination geometry is found in the title complex with the NiII atom lying on an inversion center (Fig. 1). Two O atoms and two N atoms from two chelating ligands define the equatorial plane, each ligand defining a six-membered ring with a nearly planar conformation, and the two trans-coordinated water molecules complete the octahedral coordination geometry. The Ni—O bond lengths [1.992 (2) Å] in the equatorial plane are somewhat shorter than the Ni—N bond lengths [2.025 (2) Å]. The O atoms of the protonated oxime group form intramolecular hydrogen bonds with the coordinated carboxylate O atoms, forming five-membered rings and thus fusing two six-membered chelate rings in a pseudomacrocyclic structure. The difference in C—O bond lengths for the coordinated and noncoordinated O atoms [1.271 (2) and 1.250 (2) Å] is typical for monodentately coordinated carboxylate groups (Wörl et al., 2005a,b). The C═N, C═O and N—O bond lengths are typical for 2-hydroxyiminopropanoic acid and its derivatives (Mokhir et al., 2002; Moroz et al., 2008; Onindo et al., 1995; Sliva et al., 1997a,b). In general, the geometrical parameters of the molecule are very close to those observed in the structure of the monoclinic modification of the title complex (Dudarenko et al., 2010).

The octahedral complex molecules are organized in the piles disposed along the b axis due to a hydrogen bond formed between the axial water molecule and noncoordinated carboxylate O atom of a neighboring molecule (Table 1). The Ni···Ni separation in the piles is equal to the unit cell parameter b. The piles are united in walls with the help of a hydrogen bond of different type (a bifurcate hydrogen bond formed between the water molecule and both coordinated and noncoordinated carboxylate O atoms belonging to a translational molecule). The walls disposed parallel to (0 0 1) are united in a three-dimensional structure only with the help of van der Waals contacts (Fig. 2).

Experimental

The title compound was synthesized by adding the solution of nickel(II) sulfate hexahydrate (0.1 mmol, 0.026 g) in water (5 ml) to a solution of 3-hydroxyiminobutanoic acid (0.2 mmol, 0.023 g) in water (5 ml). The resultant mixture was filtered and the dark pink filtrate was left to stand at room temperature. Slow evaporation of the solvent yielded lilac crystals of the title compound (yield 73%). 3-Hydroxyiminobutanoic acid was prepared according to the reported procedure (Khromov, 1950).

Refinement

O-bound H atoms were located from a difference Fourier map and refined isotropically. H atoms of methyl and methylene groups were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) -x, -y, -z.]
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Ni(C4H6NO3)2(H2O)2]Z = 1
Mr = 326.92F(000) = 170
Triclinic, P1Dx = 1.733 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5621 (14) ÅCell parameters from 1225 reflections
b = 7.340 (2) Åθ = 3.9–36.0°
c = 8.2979 (15) ŵ = 1.59 mm1
α = 90.71 (2)°T = 120 K
β = 92.290 (18)°Block, dark pink
γ = 112.18 (2)°0.22 × 0.14 × 0.10 mm
V = 313.31 (14) Å3

Data collection

Nonius KappaCCD diffractometer1223 independent reflections
Radiation source: fine-focus sealed tube1054 reflections with I > 2σ(I)
horizontally mounted graphite crystalRint = 0.063
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 3.8°
[var phi] and ω scans with κ offseth = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −9→9
Tmin = 0.764, Tmax = 0.856l = −10→10
2755 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3
1223 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.35 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.00000.00000.0293 (2)
O1−0.1803 (4)0.1846 (3)0.0358 (2)0.0363 (5)
O2−0.2828 (4)0.4116 (3)0.1563 (3)0.0418 (5)
O30.3067 (5)−0.0513 (4)0.2814 (3)0.0521 (7)
O40.3222 (4)0.2337 (3)−0.0904 (3)0.0349 (5)
N10.1703 (4)0.0643 (3)0.2262 (3)0.0309 (5)
C1−0.1519 (5)0.3071 (4)0.1501 (3)0.0298 (6)
C20.0492 (7)0.3370 (6)0.2868 (4)0.0537 (9)
H2A0.19020.46080.26780.064*
H2B−0.02980.35780.38400.064*
C30.1734 (5)0.1944 (4)0.3286 (3)0.0304 (6)
C40.3120 (7)0.2237 (5)0.4912 (3)0.0452 (8)
H4A0.29520.09820.53280.068*
H4B0.23690.28830.56350.068*
H4C0.49260.30330.48160.068*
H1O0.315 (8)−0.112 (6)0.210 (5)0.065 (14)*
H4O10.428 (9)0.268 (7)−0.018 (6)0.081 (16)*
H4O20.284 (8)0.322 (7)−0.111 (5)0.063 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0312 (3)0.0324 (3)0.0284 (3)0.0174 (2)−0.00632 (19)−0.00037 (19)
O10.0400 (12)0.0406 (12)0.0364 (10)0.0259 (10)−0.0105 (8)−0.0039 (9)
O20.0405 (12)0.0347 (11)0.0583 (12)0.0242 (10)−0.0057 (10)−0.0012 (10)
O30.0778 (18)0.0612 (17)0.0394 (12)0.0541 (15)−0.0208 (11)−0.0069 (11)
O40.0372 (13)0.0324 (12)0.0378 (11)0.0169 (10)−0.0043 (9)0.0020 (9)
N10.0321 (13)0.0348 (13)0.0310 (11)0.0189 (11)−0.0046 (9)0.0061 (10)
C10.0267 (14)0.0253 (14)0.0384 (14)0.0112 (12)−0.0005 (11)0.0044 (11)
C20.060 (2)0.053 (2)0.058 (2)0.0357 (18)−0.0244 (16)−0.0216 (16)
C30.0286 (14)0.0334 (15)0.0288 (13)0.0116 (12)−0.0020 (11)0.0017 (11)
C40.055 (2)0.0475 (19)0.0314 (15)0.0186 (16)−0.0112 (13)−0.0036 (13)

Geometric parameters (Å, °)

Ni1—O11.992 (2)N1—C31.265 (4)
Ni1—N12.035 (2)C1—C21.514 (4)
Ni1—O42.130 (2)C2—C31.493 (4)
O1—C11.262 (4)C2—H2A0.9700
O2—C11.243 (4)C2—H2B0.9700
O3—N11.405 (3)C3—C41.499 (4)
O3—H1O0.75 (4)C4—H4A0.9600
O4—H4O10.79 (5)C4—H4B0.9600
O4—H4O20.77 (5)C4—H4C0.9600
O1i—Ni1—O1180.00 (13)C3—N1—Ni1130.1 (2)
O1i—Ni1—N189.62 (9)O3—N1—Ni1116.79 (18)
O1—Ni1—N190.38 (9)O2—C1—O1122.5 (3)
O1i—Ni1—N1i90.38 (9)O2—C1—C2116.2 (3)
O1—Ni1—N1i89.62 (9)O1—C1—C2121.3 (3)
N1—Ni1—N1i180.00 (15)C3—C2—C1124.7 (3)
O1i—Ni1—O4i90.13 (9)C3—C2—H2A106.1
O1—Ni1—O4i89.87 (9)C1—C2—H2A106.1
N1—Ni1—O4i90.34 (9)C3—C2—H2B106.1
N1i—Ni1—O4i89.66 (9)C1—C2—H2B106.1
O1i—Ni1—O489.87 (9)H2A—C2—H2B106.3
O1—Ni1—O490.13 (9)N1—C3—C2120.3 (2)
N1—Ni1—O489.66 (9)N1—C3—C4123.3 (3)
N1i—Ni1—O490.34 (9)C2—C3—C4116.3 (3)
O4i—Ni1—O4180.00 (15)C3—C4—H4A109.5
C1—O1—Ni1130.05 (18)C3—C4—H4B109.5
N1—O3—H1O106 (3)H4A—C4—H4B109.5
Ni1—O4—H4O1106 (3)C3—C4—H4C109.5
Ni1—O4—H4O2111 (3)H4A—C4—H4C109.5
H4O1—O4—H4O2107 (4)H4B—C4—H4C109.5
C3—N1—O3113.1 (2)
Ni1—O1—C1—O2−179.15 (18)Ni1—N1—C3—C2−3.3 (4)
Ni1—O1—C1—C21.9 (4)O3—N1—C3—C40.8 (4)
O2—C1—C2—C3162.2 (3)Ni1—N1—C3—C4−179.4 (2)
O1—C1—C2—C3−18.8 (5)C1—C2—C3—N119.2 (5)
O3—N1—C3—C2176.9 (3)C1—C2—C3—C4−164.4 (3)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O···O1i0.75 (4)2.14 (4)2.766 (3)142 (4)
O4—H4O1···O2ii0.79 (5)2.07 (5)2.851 (3)169 (5)
O4—H4O1···O1ii0.79 (5)2.50 (5)3.068 (3)130 (4)
O4—H4O2···O2iii0.77 (5)2.00 (5)2.754 (3)166 (4)

Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2284).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.
  • Dudarenko, N. M., Kalibabchuk, V. A., Malysheva, M. L., Iskenderov, T. S. & Gumienna-Kontecka, E. (2010). Acta Cryst. E66, m277–m278. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun pp. 4125–4127. [PubMed]
  • Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans pp. 4201–4208.
  • Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans pp. 1428–1437. [PubMed]
  • Khromov, N. V. (1950). Zh. Obshch. Khim.20, 1858–1867.
  • Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  • Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem.47, 5656–5665. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans pp. 273–276.
  • Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem.65, 287–294.
  • Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem pp. 759–765.
  • Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans pp. 27–29. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography