PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o696–o697.
Published online 2010 February 27. doi:  10.1107/S1600536810006598
PMCID: PMC2983656

7-Chloro-4-[(E)-2-(4-methoxy­benzyl­idene)hydrazin-1-yl]quinoline monohydrate

Abstract

The organic mol­ecule in the title hydrate, C17H14ClN3O·H2O, has a small but significant twist from planarity, as seen in the dihedral angle of 12.10 (17)° between the quinoline and benzene rings. The conformation about the C=N bond is E. Chains along the b axis are formed in the crystal structure aided by water–quinoline O—H(...)N (× 2) and hydrazone–water N—H(...)O hydrogen bonds. Layers of these chains stack along the a axis via C—H(...)π and π–π inter­actions [ring centroid–ring centroid distance = 3.674 (2) Å]. C—H(...)O inter­actions are also present.

Related literature

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006 [triangle]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007 [triangle]); de Souza et al. (2005 [triangle]). For related structures, see: Kaiser et al. (2009 [triangle]); de Souza et al. (2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o696-scheme1.jpg

Experimental

Crystal data

  • C17H14ClN3O·H2O
  • M r = 329.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o696-efi1.jpg
  • a = 7.0086 (6) Å
  • b = 9.2384 (8) Å
  • c = 13.3701 (12) Å
  • α = 100.026 (4)°
  • β = 103.903 (5)°
  • γ = 107.000 (5)°
  • V = 775.27 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 120 K
  • 0.12 × 0.04 × 0.02 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.686, T max = 1.000
  • 10514 measured reflections
  • 2702 independent reflections
  • 2037 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.150
  • S = 1.02
  • 2702 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006598/lh5002sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006598/lh5002Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Quinoline derivatives display biological activity (Warshakoon et al., 2006) and in this context attract interest as potential anti-malarial agents (Andrade et al. 2007; de Souza et al., 2005). Complementing biological studies are structural investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010), and the crystal structure of the title hydrate, (I), was investigated as a part of these on-going studies.

The molecular structure of the organic component of (I), Fig. 1, shows a small twist from planarity with the dihedral angle formed between the quinoline (maximum deviation = 0.039 (4) Å for the C6 atom) and benzene rings being 12.10 (17) °. The major deviation of a torsion angle from 0 or 180 ° is found in the C3–N2–N3–C10 torsion angle of 172.4 (3) °. The conformation about the C10═N3 bond [1.274 (5) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and forms donor interactions with symmetry related quinoline-N1 atoms, the latter leading to eight-membered {···OHO···N}2 synthons. The resulting supramolecular chain along the b axis, Fig. 2, is reinforced by a C–H···O contact, Table 1. The chains are arranged in layers in the bc plane with the most significant interactions between the layers being of the type π–π with the closest of these occurring between centrosymmetrically related N1,C1—C4,C9 rings [ring centroid(N1,C1—C4,C9)···ring centroid(N1,C1—C4,C9)i distance = 3.674 (2) Å for i: -x, 1-y, 1-z], Fig. 3. In addition to these interactions, C–H···π contacts also occur between layers, Table 1.

Experimental

A solution of 7-chloro-4-quinolinylhydrazine (0.2 g, 1.03 mmol) and 4-methoxybenzaldehyde (1.24 mmol) in ethanol (5 ml) was stirred at room temperature until TLC indicated complete consumption of the hydrazine. The reaction mixture was rotary evaporated, the residue washed well with cold Et2O (3 x 10 ml), and recrystallised from moist ethanol, yield 85%, m.pt. 417–418 K. IR [KBr, cm-1] ν: 3120 (NH), 1565(N═C). MS/ESI: m/z [M—H]+: 310.8.

Refinement

The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the components comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
View of the supramolecular chain in (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. The C–H···O contacts ...
Fig. 3.
A view of the stacking of layers in (I); O–H···N hydrogen bonding is shown as orange dashed lines. The layers are linked by π–π (purple dashed lines) and C–H···π ...

Crystal data

C17H14ClN3O·H2OZ = 2
Mr = 329.78F(000) = 344
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0086 (6) ÅCell parameters from 27436 reflections
b = 9.2384 (8) Åθ = 2.9–27.5°
c = 13.3701 (12) ŵ = 0.26 mm1
α = 100.026 (4)°T = 120 K
β = 103.903 (5)°Needle, colourless
γ = 107.000 (5)°0.12 × 0.04 × 0.02 mm
V = 775.27 (12) Å3

Data collection

Nonius KappaCCD area-detector diffractometer2702 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2037 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.1°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −10→10
Tmin = 0.686, Tmax = 1.000l = −15→15
10514 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0109P)2 + 2.93P] where P = (Fo2 + 2Fc2)/3
2702 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.12492 (19)0.53097 (12)0.13214 (8)0.0337 (3)
O10.3226 (4)0.0839 (3)1.1296 (2)0.0268 (7)
N10.2963 (5)0.7665 (4)0.5289 (2)0.0233 (7)
N20.2484 (5)0.3358 (4)0.6035 (2)0.0226 (7)
H2N0.21930.25060.55270.027*
N30.2774 (5)0.3291 (4)0.7081 (2)0.0220 (7)
C10.3251 (6)0.7500 (4)0.6279 (3)0.0247 (9)
H10.36110.84180.68350.030*
C20.3074 (6)0.6112 (4)0.6569 (3)0.0217 (9)
H20.32390.60920.72920.026*
C30.2653 (6)0.4750 (4)0.5796 (3)0.0178 (8)
C40.2376 (6)0.4842 (4)0.4712 (3)0.0188 (8)
C50.2011 (6)0.3562 (4)0.3853 (3)0.0203 (8)
H50.19590.25760.39850.024*
C60.1728 (6)0.3715 (4)0.2828 (3)0.0215 (8)
H60.15180.28520.22590.026*
C70.1753 (6)0.5170 (4)0.2634 (3)0.0211 (8)
C80.2147 (6)0.6443 (4)0.3441 (3)0.0225 (9)
H80.21800.74170.32920.027*
C90.2507 (6)0.6313 (4)0.4502 (3)0.0201 (8)
C100.2358 (6)0.1919 (5)0.7224 (3)0.0235 (9)
H100.18790.10440.66200.028*
C110.2591 (6)0.1642 (4)0.8281 (3)0.0199 (8)
C120.2046 (6)0.0122 (4)0.8385 (3)0.0222 (9)
H120.1524−0.07240.77590.027*
C130.2235 (6)−0.0212 (4)0.9368 (3)0.0214 (8)
H130.1854−0.12670.94150.026*
C140.2985 (6)0.1016 (4)1.0276 (3)0.0217 (8)
C150.3569 (6)0.2567 (4)1.0201 (3)0.0229 (9)
H150.40990.34081.08300.027*
C160.3379 (6)0.2878 (4)0.9220 (3)0.0227 (9)
H160.37810.39340.91760.027*
C170.2580 (7)−0.0735 (4)1.1403 (3)0.0268 (9)
H17A0.1093−0.12801.09970.040*
H17B0.2787−0.07091.21580.040*
H17C0.3418−0.12911.11270.040*
O1W0.7337 (5)0.9550 (3)0.5298 (2)0.0309 (7)
H1W0.736 (8)1.039 (6)0.511 (4)0.046*
H2W0.610 (8)0.908 (6)0.530 (4)0.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0524 (7)0.0299 (6)0.0200 (5)0.0158 (5)0.0098 (5)0.0088 (4)
O10.0346 (17)0.0247 (15)0.0202 (14)0.0082 (13)0.0077 (12)0.0084 (11)
N10.0272 (19)0.0234 (17)0.0200 (17)0.0102 (15)0.0088 (14)0.0031 (13)
N20.0285 (19)0.0215 (17)0.0191 (17)0.0116 (15)0.0062 (14)0.0047 (13)
N30.0258 (19)0.0246 (18)0.0207 (17)0.0122 (15)0.0103 (14)0.0084 (14)
C10.025 (2)0.021 (2)0.026 (2)0.0067 (17)0.0097 (18)0.0019 (16)
C20.025 (2)0.024 (2)0.0171 (19)0.0085 (17)0.0100 (17)0.0035 (16)
C30.0147 (19)0.0195 (19)0.0205 (19)0.0066 (15)0.0067 (16)0.0058 (15)
C40.0126 (19)0.0185 (19)0.024 (2)0.0037 (15)0.0070 (16)0.0050 (15)
C50.020 (2)0.0164 (19)0.024 (2)0.0070 (16)0.0057 (16)0.0047 (15)
C60.018 (2)0.020 (2)0.025 (2)0.0038 (16)0.0088 (16)0.0041 (16)
C70.021 (2)0.023 (2)0.021 (2)0.0075 (17)0.0077 (16)0.0073 (16)
C80.024 (2)0.0175 (19)0.027 (2)0.0078 (16)0.0077 (17)0.0071 (16)
C90.016 (2)0.0194 (19)0.024 (2)0.0046 (16)0.0096 (16)0.0033 (16)
C100.024 (2)0.028 (2)0.020 (2)0.0108 (17)0.0086 (17)0.0053 (16)
C110.018 (2)0.0199 (19)0.023 (2)0.0068 (16)0.0085 (16)0.0071 (16)
C120.024 (2)0.022 (2)0.023 (2)0.0102 (17)0.0098 (17)0.0062 (16)
C130.023 (2)0.0154 (19)0.028 (2)0.0066 (16)0.0109 (17)0.0061 (16)
C140.022 (2)0.023 (2)0.022 (2)0.0076 (17)0.0093 (17)0.0085 (16)
C150.022 (2)0.019 (2)0.024 (2)0.0066 (17)0.0041 (17)0.0036 (16)
C160.024 (2)0.0168 (19)0.026 (2)0.0044 (16)0.0073 (17)0.0093 (16)
C170.032 (2)0.025 (2)0.028 (2)0.0113 (18)0.0109 (18)0.0114 (17)
O1W0.0347 (18)0.0205 (15)0.0434 (18)0.0117 (14)0.0171 (15)0.0123 (13)

Geometric parameters (Å, °)

Cl1—C71.740 (4)C7—C81.360 (5)
O1—C141.377 (4)C8—C91.413 (5)
O1—C171.435 (5)C8—H80.9500
N1—C11.332 (5)C10—C111.458 (5)
N1—C91.385 (5)C10—H100.9500
N2—C31.357 (5)C11—C121.385 (5)
N2—N31.380 (4)C11—C161.409 (5)
N2—H2N0.8800C12—C131.386 (5)
N3—C101.274 (5)C12—H120.9500
C1—C21.383 (5)C13—C141.379 (5)
C1—H10.9500C13—H130.9500
C2—C31.386 (5)C14—C151.400 (5)
C2—H20.9500C15—C161.374 (5)
C3—C41.435 (5)C15—H150.9500
C4—C91.417 (5)C16—H160.9500
C4—C51.411 (5)C17—H17A0.9800
C5—C61.374 (5)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.409 (5)O1W—H1W0.85 (5)
C6—H60.9500O1W—H2W0.85 (5)
C14—O1—C17117.0 (3)N1—C9—C8116.8 (3)
C1—N1—C9115.5 (3)C4—C9—C8119.7 (3)
C3—N2—N3119.4 (3)N3—C10—C11122.5 (3)
C3—N2—H2N120.3N3—C10—H10118.8
N3—N2—H2N120.3C11—C10—H10118.8
C10—N3—N2115.5 (3)C12—C11—C16117.8 (3)
N1—C1—C2125.9 (4)C12—C11—C10119.9 (3)
N1—C1—H1117.0C16—C11—C10122.3 (3)
C2—C1—H1117.0C11—C12—C13122.5 (4)
C1—C2—C3119.5 (3)C11—C12—H12118.8
C1—C2—H2120.3C13—C12—H12118.8
C3—C2—H2120.3C14—C13—C12118.8 (3)
N2—C3—C2122.1 (3)C14—C13—H13120.6
N2—C3—C4120.0 (3)C12—C13—H13120.6
C2—C3—C4117.9 (3)O1—C14—C13124.4 (3)
C9—C4—C5118.4 (3)O1—C14—C15115.4 (3)
C9—C4—C3117.7 (3)C13—C14—C15120.2 (3)
C5—C4—C3123.9 (3)C16—C15—C14120.2 (4)
C6—C5—C4121.3 (3)C16—C15—H15119.9
C6—C5—H5119.3C14—C15—H15119.9
C4—C5—H5119.3C15—C16—C11120.5 (3)
C5—C6—C7119.0 (3)C15—C16—H16119.8
C5—C6—H6120.5C11—C16—H16119.8
C7—C6—H6120.5O1—C17—H17A109.5
C8—C7—C6121.6 (3)O1—C17—H17B109.5
C8—C7—Cl1120.0 (3)H17A—C17—H17B109.5
C6—C7—Cl1118.3 (3)O1—C17—H17C109.5
C7—C8—C9119.8 (3)H17A—C17—H17C109.5
C7—C8—H8120.1H17B—C17—H17C109.5
C9—C8—H8120.1H1W—O1W—H2W108 (5)
N1—C9—C4123.5 (3)
C3—N2—N3—C10172.4 (3)C3—C4—C9—N12.5 (5)
C9—N1—C1—C2−2.0 (6)C5—C4—C9—C83.8 (5)
N1—C1—C2—C33.1 (6)C3—C4—C9—C8−177.0 (3)
N3—N2—C3—C2−1.1 (5)C7—C8—C9—N1178.1 (3)
N3—N2—C3—C4179.4 (3)C7—C8—C9—C4−2.4 (6)
C1—C2—C3—N2179.3 (3)N2—N3—C10—C11179.7 (3)
C1—C2—C3—C4−1.2 (5)N3—C10—C11—C12177.7 (4)
N2—C3—C4—C9178.2 (3)N3—C10—C11—C16−2.8 (6)
C2—C3—C4—C9−1.3 (5)C16—C11—C12—C130.5 (6)
N2—C3—C4—C5−2.7 (5)C10—C11—C12—C13180.0 (4)
C2—C3—C4—C5177.8 (3)C11—C12—C13—C140.3 (6)
C9—C4—C5—C6−1.8 (5)C17—O1—C14—C13−2.2 (5)
C3—C4—C5—C6179.1 (4)C17—O1—C14—C15178.0 (3)
C4—C5—C6—C7−1.6 (6)C12—C13—C14—O1179.4 (4)
C5—C6—C7—C83.1 (6)C12—C13—C14—C15−0.9 (6)
C5—C6—C7—Cl1−176.5 (3)O1—C14—C15—C16−179.5 (3)
C6—C7—C8—C9−1.1 (6)C13—C14—C15—C160.7 (6)
Cl1—C7—C8—C9178.5 (3)C14—C15—C16—C110.1 (6)
C1—N1—C9—C4−0.9 (5)C12—C11—C16—C15−0.7 (6)
C1—N1—C9—C8178.6 (3)C10—C11—C16—C15179.8 (4)
C5—C4—C9—N1−176.7 (3)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.85 (5)2.02 (5)2.867 (4)172 (5)
N2—H2n···O1wii0.882.183.007 (4)157
O1w—H2w···N10.85 (5)2.20 (5)3.047 (5)175 (5)
C5—H5···O1wii0.952.453.380 (5)165
C17—H17a···Cgiii0.982.653.508 (5)147

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5002).

References

  • Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm 558, 194–198. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Souza, M. V. N. de (2005). Mini-Rev. Med. Chem 5, 1009–1017. [PubMed]
  • Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153. [PMC free article] [PubMed]
  • Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121. [PMC free article] [PubMed]
  • Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett 16, 5207–5211. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography