PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o608.
Published online 2010 February 13. doi:  10.1107/S1600536810005076
PMCID: PMC2983641

1-Chloro­meth­yl-3-nitro­benzene

Abstract

In the title mol­ecule, C7H6ClNO2, the plane of the nitro group and the direction of the chloro­methyl group are twisted away from the benzene ring, forming dihedral angles of 8.2 (3) and 67.55 (12)°, respectively. In the crystal structure, weak inter­molecular C—H(...)O inter­actions link the mol­ecules into corrugated sheets parallel to the bc plane.

Related literature

For the characteristics of nitro­aromatic compounds, see: Moreno et al. (1986 [triangle]). For details of the synthesis, see: Livermore & Sealock (1947 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o608-scheme1.jpg

Experimental

Crystal data

  • C7H6ClNO2
  • M r = 171.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o608-efi1.jpg
  • a = 12.1219 (10) Å
  • b = 4.5104 (4) Å
  • c = 15.1219 (11) Å
  • β = 112.709 (2)°
  • V = 762.69 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 296 K
  • 0.34 × 0.18 × 0.11 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • 8475 measured reflections
  • 1903 independent reflections
  • 1350 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.03
  • 1903 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005076/cv2694sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005076/cv2694Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support.

supplementary crystallographic information

Comment

The irreversible binding of the reductive intermediates of nitroaromatic compounds to protein and DNA is thought to be responsible for the carcinogenicity and mutagenicity of this class of compounds. Several studies revealed that some nitro radical metabolites with special features are expected to decompose to form neutral carbon-centered free radicals with not net reduction of the nitro group occuring. The radicals anions of p-and o-nitrobenzyl chloride are known to expel chloride to form the corresponding carbon-centered nitrobenzyl radicals with rate constants of 1 × 104 and 4 × 103 s-1. Such species are highly reactive and could account for the unusual cytotoxicity of these nitrocompounds (Moreno et al., 1986). This structural report on 1-(chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) might be helpful to carry out such studies on these nitroaromatic compounds in future.

The molecule of the title compound has normal bond lengths (Allen et al., 1987). The benzene ring (C1-C6) forms dihedral angles of 8.2 (3) and 67.55 (12)°, with the plane of the nitro group (N1/O1/O2) and with the direction of the chloromethyl group (C7/Cl1), respectively.

In the crystal structure, there is no classic hydrogen bonds. Weak intermolecular C—H···O interactions (Table 1) link molecules into corrugated sheets parallel to bc plane.

Experimental

1-(Chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) was prepared from the m-nitrobenzyl alcohol, 5 g; being refluxed with 25 ml of concentrated hydrochloric acid on a boiling water bath for 1.5 h. The ether was washed with water and sodium carbonate and dried with sodium sulfate. Evaporation of ether yielded an oily residue which crystallized on cooling. A 70 per cent yield of the crude compound was obtained. Recrystallization from petroleum ether gave a product melting at 317-319 K (Livermore and Sealock, 1947). m-Nitrobenzyl alcohol was purchased from Sigma Aldrich while all other chemicals involved were obtained from Merk, Germany.

Refinement

H atoms were geometrically positioned (C—H = 0.93-0.97 Å), and treated using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Crystal data

C7H6ClNO2F(000) = 352
Mr = 171.58Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2610 reflections
a = 12.1219 (10) Åθ = 2.8–26.9°
b = 4.5104 (4) ŵ = 0.44 mm1
c = 15.1219 (11) ÅT = 296 K
β = 112.709 (2)°Slab, pale yellow
V = 762.69 (11) Å30.34 × 0.18 × 0.11 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer1350 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
graphiteθmax = 28.4°, θmin = 1.8°
[var phi] and ω scansh = −16→16
8475 measured reflectionsk = −6→5
1903 independent reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2569P] where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.46056 (5)0.88735 (16)0.10489 (5)0.0856 (2)
O10.91285 (17)1.2499 (5)0.51307 (11)0.0999 (7)
O20.78454 (18)0.9074 (5)0.49378 (12)0.1009 (8)
N10.83972 (16)1.0739 (5)0.46346 (11)0.0666 (6)
C10.86599 (17)1.2052 (5)0.23036 (13)0.0593 (6)
C20.88908 (16)1.2205 (5)0.32703 (13)0.0559 (6)
C30.81640 (15)1.0604 (4)0.36006 (11)0.0499 (5)
C40.72367 (16)0.8898 (4)0.30166 (13)0.0540 (6)
C50.70089 (15)0.8763 (4)0.20455 (13)0.0526 (6)
C60.77357 (17)1.0351 (4)0.17013 (12)0.0559 (6)
C70.60014 (19)0.6926 (5)0.13890 (17)0.0738 (8)
H10.913501.311200.205700.0710*
H20.951601.335000.368300.0670*
H40.676500.784200.326700.0650*
H60.759601.026500.105200.0670*
H7A0.595600.508800.170700.0890*
H7B0.614900.643600.082000.0890*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0538 (3)0.1001 (5)0.0947 (4)−0.0057 (3)0.0195 (3)−0.0148 (3)
O10.1089 (13)0.1307 (16)0.0585 (9)−0.0134 (13)0.0306 (9)−0.0266 (10)
O20.1138 (14)0.1320 (17)0.0669 (10)0.0001 (12)0.0459 (10)0.0313 (10)
N10.0684 (10)0.0841 (13)0.0505 (9)0.0193 (10)0.0265 (8)0.0092 (9)
C10.0587 (10)0.0689 (12)0.0572 (10)−0.0008 (9)0.0300 (9)0.0060 (9)
C20.0500 (9)0.0607 (11)0.0548 (10)0.0006 (9)0.0179 (8)−0.0025 (9)
C30.0518 (9)0.0558 (11)0.0436 (8)0.0127 (8)0.0200 (7)0.0054 (7)
C40.0546 (9)0.0498 (10)0.0624 (10)0.0059 (8)0.0278 (8)0.0097 (8)
C50.0517 (9)0.0445 (10)0.0583 (10)0.0084 (8)0.0175 (8)−0.0027 (8)
C60.0593 (10)0.0640 (12)0.0471 (9)0.0104 (9)0.0236 (8)0.0004 (8)
C70.0683 (13)0.0587 (12)0.0863 (15)0.0003 (10)0.0210 (11)−0.0148 (11)

Geometric parameters (Å, °)

Cl1—C71.796 (3)C5—C61.384 (3)
O1—N11.211 (3)C5—C71.493 (3)
O2—N11.208 (3)C1—H10.9300
N1—C31.479 (2)C2—H20.9300
C1—C21.380 (3)C4—H40.9300
C1—C61.373 (3)C6—H60.9300
C2—C31.374 (3)C7—H7A0.9700
C3—C41.367 (3)C7—H7B0.9700
C4—C51.387 (3)
Cl1···H4i2.8900C6···C7vi3.560 (3)
O1···N1ii3.230 (3)C6···O2viii3.374 (3)
O1···O1ii3.217 (3)C7···C6vii3.560 (3)
O1···O1iii3.218 (3)C1···H1ix3.0400
O1···C2ii3.410 (3)C5···H7Avi3.0900
O1···C3ii3.399 (3)C6···H7Avi3.0400
O2···C6iv3.374 (3)H1···C1x3.0400
O1···H22.4400H2···O12.4400
O1···H6v2.9000H2···O1iii2.6700
O1···H2iii2.6700H4···O22.4200
O2···H42.4200H4···H7A2.5100
O2···H6iv2.6700H4···Cl1xi2.8900
O2···H7Biv2.8600H6···H7B2.3900
N1···O1ii3.230 (3)H6···O1xii2.9000
C1···C5vi3.566 (3)H6···O2viii2.6700
C2···C4vi3.562 (3)H7A···C5vii3.0900
C2···O1ii3.410 (3)H7A···C6vii3.0400
C3···O1ii3.399 (3)H7A···H42.5100
C4···C2vii3.562 (3)H7B···H62.3900
C5···C1vii3.566 (3)H7B···O2viii2.8600
O1—N1—O2123.57 (18)C2—C1—H1120.00
O1—N1—C3118.53 (19)C6—C1—H1120.00
O2—N1—C3117.90 (18)C1—C2—H2121.00
C2—C1—C6120.7 (2)C3—C2—H2121.00
C1—C2—C3117.56 (18)C3—C4—H4120.00
N1—C3—C2118.37 (17)C5—C4—H4120.00
N1—C3—C4118.69 (17)C1—C6—H6120.00
C2—C3—C4122.94 (16)C5—C6—H6120.00
C3—C4—C5119.12 (18)Cl1—C7—H7A109.00
C4—C5—C6118.70 (17)Cl1—C7—H7B109.00
C4—C5—C7120.40 (18)C5—C7—H7A109.00
C6—C5—C7120.90 (17)C5—C7—H7B109.00
C1—C6—C5120.98 (17)H7A—C7—H7B108.00
Cl1—C7—C5110.94 (15)
O1—N1—C3—C28.1 (3)N1—C3—C4—C5179.84 (18)
O1—N1—C3—C4−171.9 (2)C2—C3—C4—C5−0.1 (3)
O2—N1—C3—C2−171.8 (2)C3—C4—C5—C60.4 (3)
O2—N1—C3—C48.3 (3)C3—C4—C5—C7−179.86 (18)
C6—C1—C2—C3−0.1 (3)C4—C5—C6—C1−0.5 (3)
C2—C1—C6—C50.4 (3)C7—C5—C6—C1179.7 (2)
C1—C2—C3—N1180.0 (2)C4—C5—C7—Cl181.5 (2)
C1—C2—C3—C4−0.1 (3)C6—C5—C7—Cl1−98.7 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) −x+2, −y+3, −z+1; (iv) x, −y+3/2, z+1/2; (v) x, −y+5/2, z+1/2; (vi) x, y+1, z; (vii) x, y−1, z; (viii) x, −y+3/2, z−1/2; (ix) −x+2, y−1/2, −z+1/2; (x) −x+2, y+1/2, −z+1/2; (xi) −x+1, y−1/2, −z+1/2; (xii) x, −y+5/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1iii0.932.673.583 (3)166
C6—H6···O2viii0.932.673.374 (3)133

Symmetry codes: (iii) −x+2, −y+3, −z+1; (viii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2694).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Livermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem.167, 699–704. [PubMed]
  • Moreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem.261, 7811–7815. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography