PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o576.
Published online 2010 February 10. doi:  10.1107/S1600536810004460
PMCID: PMC2983638

(Z)-3-(2-Methoxy­anilino)-1-phenyl­but-2-en-1-one

Abstract

In the title compound, C17H17NO2, the dihedral angle between the two benzene rings is 55.2 (2)°. The meth­oxy group is slightly twisted away from the aniline ring [dihedral angle = 10.3 (2)°]. An intra­molecular N—H(...)O inter­action is present. In the crystal, the mol­ecules are linked into a three-dimensional supra­molecular network through two sets of C—H(...)π inter­actions.

Related literature

For the use of β-enamino ketones as inter­mediates for the synthesis of natural therapeutic and biologically active analogues, see:Azzaro et al. (1981 [triangle]); Dannhardt et al. (1998 [triangle]); Boger et al. (1989 [triangle]); Wang et al. (1982 [triangle]). For the synthesis of β-enamino ketones, see: Greenhill et al. (1977 [triangle]); Elassar & El-Khair (2003 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o576-scheme1.jpg

Experimental

Crystal data

  • C17H17NO2
  • M r = 267.32
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-66-0o576-efi1.jpg
  • a = 19.125 (2) Å
  • c = 7.9993 (19) Å
  • V = 2925.9 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 K
  • 0.20 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.984, T max = 0.992
  • 15499 measured reflections
  • 3001 independent reflections
  • 1457 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.115
  • S = 1.02
  • 3001 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004460/bv2137sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004460/bv2137Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Self-Determined Research Program of Jiangnan University.

supplementary crystallographic information

Comment

β-Enamino ketones have attracted much interest because they are versatile intermediates for the synthesis of natural therapeutic and biologically active analogues including taxo anticonvulsivant (Azzaro et al., 1981), anti-inflammatory (Dannhardt et al., 1998) and antitumor agents (Boger et al., 1989) as well as quinolone antibacterials (Wang et al., 1982) It is therefore not surprising that many synthetic methods have been developed for the preparation of these compounds (Greenhill et al.,1977; Elassar et al., 2003). In our developing new environmental friendly methodologies (Zhang et al., 2006) for the preparation of β-enamino ketones, we synthesized the title compound (I) (Fig.1), the synthesis and crystal structure of which are reported here.

In the title compound, the ring C1—C6 forms dihedral angles of 10.3 (2)° and 124.8 (2)°, respectively, with the C7—O1—C2 methoxy group and the C12—C17. The bond lengths C10—C11 [1.417 (3) Å] and N1—C9 [1.349 (2) Å] are slightly shorter than corresponding C11—C12 [1.497 (3) Å], and N1—C1[1.404 (2) Å], indicating a weak electron delocalization.

In the crystal, each four centrosymmetry related molecules are linked by C3—H1—Cg1 interactions into a four-leaves windmill (Fig.2), which are further linked into a three-dimensional supramolecular network by C16—H16—Cg2 interactions(Fig.3). The C—H···π distance is 2.79Å for C3—H1—Cg1 (Cg1: C1/C2—C3), with an angle of 152.8 (2)° and 2.78%A for C16—H16—Cg13 with an angle of 166.5 (3)°.

Experimental

A mixture of the 1-phenylbutane-1,3-dione (5 mmol), 2-methoxybenzenamine (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (2: 8). A pale yellow solid was obtained, with a yield of 83%. mp 92–93οC; IR (neat):ν 3006, 1608, 1477, 1461, 1373, 1284,1119,1024, 748 cm-1; 1H NMR(CDCl3, 300 MHz): δ 2.14(s, 3H), 3.90(s, 3H), 5.91(s, 1H), 6.92–6.97(d, 2H,Ar—H), 7.17–7.22(m, 2H,Ar—H), 7.41–7.45(m, 3H,Ph), 7.91–7.94 (m, 2H, Ph), 12.87 (br s, 1H, NH). 13C NMR(CDCl3, 75 MHz): δ 20.4, 55.8, 94.4,111.4, 120.4, 125.3, 126.6, 127.1,128.1, 130.7,140.2,153.0, 162.3, 188.5. ESI-MS: 268(M+1)+ Anal. Calcd for C17H17NO2: C,76.38; H,6.41;N,5.24. Found:C,76.56; H,6.28; N,5.35.

Single crystals suitable for X-ray diffraction study were obtained from ethyl acetate-cyclohexane by slow evaporation at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(CH3)or 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about its C—C bond.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The intermolecular C—H···π interactions between aromatic rings of adjacent molecules.
Fig. 3.
The molecular packing of the title compound, showing the C—H···π three-dimensional supramolecular network.

Crystal data

C17H17NO2Dx = 1.214 Mg m3
Mr = 267.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2401 reflections
Hall symbol: -P 4bcθ = 2.8–21.2°
a = 19.125 (2) ŵ = 0.08 mm1
c = 7.9993 (19) ÅT = 294 K
V = 2925.9 (8) Å3Block, colorless
Z = 80.20 × 0.12 × 0.10 mm
F(000) = 1136

Data collection

Bruker SMART CCD area-detector diffractometer3001 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
graphiteRint = 0.067
ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→23
Tmin = 0.984, Tmax = 0.992k = −23→12
15499 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115w = 1/[σ2(Fo2) + (0.0385P)2 + 0.433P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3001 reflectionsΔρmax = 0.13 e Å3
184 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.66062 (7)0.61242 (9)0.03020 (19)0.0750 (5)
O20.50749 (8)0.65620 (8)0.22101 (19)0.0700 (5)
N10.53344 (8)0.60548 (8)−0.0795 (2)0.0544 (5)
H10.54440.63040.00610.065*
C10.58654 (11)0.59997 (10)−0.1999 (3)0.0518 (5)
C20.65502 (11)0.60408 (11)−0.1391 (3)0.0571 (6)
C30.71061 (12)0.60098 (13)−0.2475 (3)0.0709 (7)
H30.75600.6032−0.20640.085*
C40.69923 (13)0.59461 (13)−0.4180 (3)0.0743 (7)
H40.73700.5917−0.49080.089*
C50.63235 (13)0.59259 (12)−0.4793 (3)0.0676 (7)
H50.62470.5889−0.59380.081*
C60.57633 (12)0.59603 (11)−0.3709 (3)0.0595 (6)
H60.53110.5957−0.41330.071*
C70.72721 (13)0.62799 (16)0.0979 (3)0.0985 (9)
H7A0.75700.58780.08800.148*
H7B0.72230.64030.21370.148*
H7C0.74750.66640.03790.148*
C80.44084 (11)0.53573 (11)−0.2157 (3)0.0621 (6)
H8A0.42700.5660−0.30560.093*
H8B0.40120.5092−0.17860.093*
H8C0.47670.5044−0.25390.093*
C90.46824 (11)0.57866 (10)−0.0740 (2)0.0493 (5)
C100.42736 (10)0.59017 (10)0.0650 (3)0.0532 (5)
H100.38250.57150.06470.064*
C110.44829 (11)0.62827 (10)0.2084 (3)0.0535 (5)
C120.39786 (11)0.63783 (11)0.3497 (3)0.0548 (6)
C130.34395 (11)0.59189 (12)0.3815 (3)0.0654 (6)
H130.33870.55240.31490.078*
C140.29750 (13)0.60378 (16)0.5113 (3)0.0844 (8)
H140.26150.57220.53200.101*
C150.30459 (18)0.66161 (19)0.6081 (4)0.0987 (10)
H150.27290.67020.69380.118*
C160.35791 (18)0.70697 (16)0.5801 (4)0.1039 (10)
H160.36280.74620.64780.125*
C170.40504 (14)0.69538 (13)0.4520 (3)0.0807 (8)
H170.44170.72650.43480.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0502 (10)0.1141 (14)0.0606 (10)−0.0126 (9)−0.0072 (8)0.0100 (9)
O20.0586 (10)0.0757 (11)0.0757 (10)−0.0146 (8)0.0001 (8)−0.0133 (9)
N10.0480 (11)0.0562 (11)0.0591 (11)−0.0065 (9)−0.0022 (9)−0.0057 (9)
C10.0480 (13)0.0461 (13)0.0612 (15)−0.0023 (10)−0.0015 (12)0.0043 (11)
C20.0490 (14)0.0637 (15)0.0586 (14)−0.0054 (11)−0.0027 (11)0.0112 (12)
C30.0492 (14)0.0939 (19)0.0696 (17)−0.0019 (12)0.0022 (12)0.0153 (14)
C40.0645 (17)0.0842 (18)0.0741 (18)−0.0017 (13)0.0158 (14)0.0066 (14)
C50.0785 (18)0.0670 (16)0.0573 (14)−0.0099 (13)0.0032 (14)0.0044 (12)
C60.0564 (14)0.0610 (15)0.0612 (15)−0.0058 (11)−0.0046 (12)0.0036 (12)
C70.0568 (16)0.162 (3)0.0763 (18)−0.0205 (17)−0.0157 (14)0.0046 (18)
C80.0584 (14)0.0648 (14)0.0633 (14)−0.0089 (11)−0.0098 (12)0.0006 (12)
C90.0480 (12)0.0414 (12)0.0585 (13)0.0022 (10)−0.0109 (11)0.0047 (10)
C100.0415 (12)0.0545 (13)0.0637 (14)0.0003 (10)−0.0038 (11)0.0005 (12)
C110.0484 (13)0.0459 (12)0.0662 (14)0.0020 (11)−0.0060 (11)0.0041 (11)
C120.0530 (14)0.0537 (14)0.0577 (13)0.0089 (11)−0.0037 (11)0.0026 (11)
C130.0589 (15)0.0682 (16)0.0690 (15)0.0030 (12)0.0007 (13)0.0041 (13)
C140.0638 (17)0.104 (2)0.0851 (18)0.0042 (16)0.0144 (15)0.0109 (18)
C150.102 (2)0.106 (3)0.088 (2)0.027 (2)0.0247 (19)−0.001 (2)
C160.132 (3)0.086 (2)0.094 (2)0.007 (2)0.028 (2)−0.0225 (18)
C170.090 (2)0.0689 (17)0.0837 (18)−0.0053 (14)0.0130 (16)−0.0124 (15)

Geometric parameters (Å, °)

O1—C21.368 (2)C8—C91.494 (3)
O1—C71.415 (2)C8—H8A0.9600
O2—C111.256 (2)C8—H8B0.9600
N1—C91.349 (2)C8—H8C0.9600
N1—C11.404 (2)C9—C101.377 (3)
N1—H10.8600C10—C111.417 (3)
C1—C61.384 (3)C10—H100.9300
C1—C21.399 (3)C11—C121.497 (3)
C2—C31.373 (3)C12—C171.378 (3)
C3—C41.387 (3)C12—C131.378 (3)
C3—H30.9300C13—C141.385 (3)
C4—C51.370 (3)C13—H130.9300
C4—H40.9300C14—C151.357 (4)
C5—C61.380 (3)C14—H140.9300
C5—H50.9300C15—C161.357 (4)
C6—H60.9300C15—H150.9300
C7—H7A0.9600C16—C171.383 (3)
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600C17—H170.9300
C2—O1—C7118.28 (17)C9—C8—H8C109.5
C9—N1—C1131.48 (18)H8A—C8—H8C109.5
C9—N1—H1114.3H8B—C8—H8C109.5
C1—N1—H1114.3N1—C9—C10119.35 (19)
C6—C1—C2118.6 (2)N1—C9—C8120.57 (19)
C6—C1—N1125.47 (19)C10—C9—C8120.07 (18)
C2—C1—N1115.77 (19)C9—C10—C11125.15 (19)
O1—C2—C3124.7 (2)C9—C10—H10117.4
O1—C2—C1115.07 (19)C11—C10—H10117.4
C3—C2—C1120.2 (2)O2—C11—C10122.6 (2)
C2—C3—C4120.2 (2)O2—C11—C12117.9 (2)
C2—C3—H3119.9C10—C11—C12119.50 (19)
C4—C3—H3119.9C17—C12—C13118.3 (2)
C5—C4—C3120.1 (2)C17—C12—C11118.8 (2)
C5—C4—H4120.0C13—C12—C11122.9 (2)
C3—C4—H4120.0C12—C13—C14120.9 (2)
C4—C5—C6119.9 (2)C12—C13—H13119.6
C4—C5—H5120.1C14—C13—H13119.6
C6—C5—H5120.1C15—C14—C13119.8 (3)
C5—C6—C1121.0 (2)C15—C14—H14120.1
C5—C6—H6119.5C13—C14—H14120.1
C1—C6—H6119.5C14—C15—C16120.1 (3)
O1—C7—H7A109.5C14—C15—H15119.9
O1—C7—H7B109.5C16—C15—H15119.9
H7A—C7—H7B109.5C15—C16—C17120.6 (3)
O1—C7—H7C109.5C15—C16—H16119.7
H7A—C7—H7C109.5C17—C16—H16119.7
H7B—C7—H7C109.5C12—C17—C16120.2 (3)
C9—C8—H8A109.5C12—C17—H17119.9
C9—C8—H8B109.5C16—C17—H17119.9
H8A—C8—H8B109.5
C9—N1—C1—C634.4 (3)N1—C9—C10—C11−0.7 (3)
C9—N1—C1—C2−150.6 (2)C8—C9—C10—C11178.21 (18)
C7—O1—C2—C38.6 (3)C9—C10—C11—O20.7 (3)
C7—O1—C2—C1−170.2 (2)C9—C10—C11—C12178.91 (18)
C6—C1—C2—O1175.91 (19)O2—C11—C12—C1724.9 (3)
N1—C1—C2—O10.5 (3)C10—C11—C12—C17−153.5 (2)
C6—C1—C2—C3−3.0 (3)O2—C11—C12—C13−155.7 (2)
N1—C1—C2—C3−178.40 (19)C10—C11—C12—C1325.9 (3)
O1—C2—C3—C4−178.0 (2)C17—C12—C13—C141.0 (3)
C1—C2—C3—C40.8 (4)C11—C12—C13—C14−178.4 (2)
C2—C3—C4—C51.1 (4)C12—C13—C14—C150.5 (4)
C3—C4—C5—C6−0.8 (4)C13—C14—C15—C16−1.4 (4)
C4—C5—C6—C1−1.4 (3)C14—C15—C16—C170.8 (5)
C2—C1—C6—C53.3 (3)C13—C12—C17—C16−1.6 (4)
N1—C1—C6—C5178.25 (19)C11—C12—C17—C16177.8 (2)
C1—N1—C9—C10177.28 (19)C15—C16—C17—C120.8 (4)
C1—N1—C9—C8−1.6 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring. C13 is the nearest aromatic atom to H16.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.639 (2)139
C3—H3···Cg1i0.932.793.725 (2)153
C16—H16···π(C13)ii0.932.783.688 (4)167

Symmetry codes: (i) −y+3/2, x, −z−1/2; (ii) −y+1, x+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2137).

References

  • Azzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880–881.
  • Boger, D. L., Ishizaki, T., Wysocki, J. R. J., Munk, S. A., Kitos, P. A. & Untornwat, O. (1989). J. Am. Chem. Soc.111, 6461–6463.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin,USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dannhardt, G., Bauer, A. & Nowe, U. (1998). J. Prakt. Chem.340, 256–263.
  • Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.
  • Greenhill, J. V. (1977). Chem. Soc. Rev.6, 277–294.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. F., Izawa, T., Kobayashi, S. & Ohno, M. (1982). J. Am. Chem. Soc.104, 6465–6466.
  • Zhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal.348, 184–190.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography