PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o702.
Published online 2010 February 27. doi:  10.1107/S1600536810006537
PMCID: PMC2983635

Bis(oxonium) tetra­kis(o-toluidinium) cyclo­hexa­phosphate

Abstract

In the title compound, 4C7H10N+·2H3O+·P6O18 6−, the complete cyclo­hexa­phosphate anion is generated by crystallographic inversion symmetry. In the crystal, the H3O+ ions and the [P6O18]6− anions are linked by O—H(...)O hydrogen bonds, generating infinite layers lying parallel to the ab plane at z = 1/2. These layers are inter­connected by the organic cations, which establish N—H(...)O hydrogen bonds with the [P6O18]6− anions.

Related literature

For further synthetic details, see: Schülke & Kayser (1985 [triangle]). For related structures, see: Amri et al. (2008 [triangle]); Larafa et al. (1997 [triangle]); Akriche & Rzaigui (2000 [triangle]); Selmi et al. (2009 [triangle]); Khemiri et al. (2009 [triangle]). For a discussion on hydrogen bonding, see: Brown (1976 [triangle]); Blessing (1986 [triangle]). For tetra­hedral distortions, see: Baur (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o702-scheme1.jpg

Experimental

Crystal data

  • 4C7H10N+·2H3O+·P6O18 6−
  • M r = 944.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o702-efi2.jpg
  • a = 9.344 (3) Å
  • b = 10.360 (2) Å
  • c = 11.537 (2) Å
  • α = 95.35 (4)°
  • β = 92.23 (3)°
  • γ = 116.00 (5)°
  • V = 995.4 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 6038 measured reflections
  • 5773 independent reflections
  • 3061 reflections with I > 2σ(I)
  • R int = 0.025
  • 2 standard reflections every 120 min intensity decay: 10%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.114
  • S = 1.01
  • 5773 reflections
  • 278 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996 [triangle]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006537/hb5337sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006537/hb5337Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many cyclohexaphosphates of organic cations and inorganic cations (mono, bi and trivalent) have been synthesized and structurally characterized. But the association of the oxonium cation to this kind of material is very rare. On the other hand, there is only one cyclohexaphosphate of mixed cation (organic-oxonium) (Amri, et al., 2008). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, (o-CH3C6H4NH3)4(H3O)2P6O18, (I).

The title compound is built up from P6O186- anion, four organic o-toluidinium and two oxonium cations (Fig. 1). The half of the anion, two organic and one oxonium cations constitute the asymmetric unit of (I). The atomic arrangement of the title compound is characterized by the existence of inorganic layers, built by P6O186- ring anions and oxonium cations. Each cyclohexaphosphate group is connected to its adjacent neighbours by six oxonium ions through strong O—H···O hydrogen bonds (Table 1) (H···O = 1.66 Å) (Blessing, 1986); (Brown, 1976). The same phenomenon has been observed for (C10H13NH3)4(H3O)2P6O18.3H2O (Amri, et al., 2008).

It is worth noting that the H3O+ ions exhibit a pyramidal geometry. These layers formed by P6O18 groups and oxonium ions cross the unit cell parallel to the (a, b) plane at z = 1/2 (Fig. 2). Between these layers, separated by a distance of 11.537 (2) Å, organic cations establish hydrogen bonds to interconnect the different anions. The N(1)H3 groups produce the internal P6O18 ring cohesion through hydrogen bonds involving external oxygen atoms of each PO4 tetrahedron. The other N(2)H3 groups, link three different rings and so contribute to the interlayer cohesion of this compound. Inside such a structure, the phosphoric ring has an -1 internal symmetry. It develops around the inversion centre located at (0, 0, 1/2), so it is built up by only three independent tetrahedra. The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the PO4 tetrahedra [DI (OPO) = 0.038; DI (PO) = 0.039; and DI (OO) = 0.012], show a pronounced distortion of the PO distances and OPO angles if compared to OO distances. So, the PO4 group can be considered as a rigid regular arrangement of oxygen atoms, with the phosphorus atom slightly displaced from the gravity centre.

In this atomic arrangement exist two independent o-toluidinium cations. Interatomic bond lengths and angles of these groups spread respectively within the ranges [1.367 (5)-1.504 (4) Å] and [115.7 (3)-122.8 (3)°]. The aromatic rings are planar with an average deviation of 0.000189 Å and form a dihedral angle of 28.53°. These values are similar to those obtained for the same organic group in other compounds (Larafa, et al. 1997); (Akriche & Rzaigui, 2000); (Selmi, et al., 2009); (Khemiri et al., 2009).

Experimental

The title compound has been prepared in two steps. In the first one, we prepare Li6P6O18.6H2O according to the process described by Schülke and Kayser (Schülke & Kayser, 1985). From this lithium salt, we prepare an aqueous solution of cyclohexaphosphate acid H6P6O18 by passing a solution of Li6P6O18.6H2O (5 g in 100 ml) through an ion- exchange resin in its H-state (Amberlite IR 120). In the second step, at 20 ml of the aqueous solution of H6P6O18 freshly prepared, we add drop by drop a solution of o-toluidine (30 mmol in 20 ml of ethanol) under continuous stirring.

In order to avoid the hydrolysis of the ring anion the above reaction is performed at room temperature. The so-obtained solution is then slowly evaporated until1 the formation of pink prisms of (I). The title compound is stable for months under normal conditions of temperature and relative humidity.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: i: -x, -y, -z.
Fig. 2.
Projection of the structure of (I) along the a axis.

Crystal data

4C7H10N+·2H3O+·P6O186Z = 1
Mr = 944.51F(000) = 492
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.344 (3) ÅCell parameters from 25 reflections
b = 10.360 (2) Åθ = 10–12°
c = 11.537 (2) ŵ = 0.36 mm1
α = 95.35 (4)°T = 293 K
β = 92.23 (3)°Prism, pink
γ = 116.00 (5)°0.25 × 0.20 × 0.15 mm
V = 995.4 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.025
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 3.0°
graphiteh = −13→13
non–profiled ω scansk = −14→14
6038 measured reflectionsl = 0→16
5773 independent reflections2 standard reflections every 120 min
3061 reflections with I > 2σ(I) intensity decay: 10%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3
5773 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.19977 (8)−0.14917 (7)0.55334 (6)0.02334 (15)
P2−0.14713 (8)−0.25078 (7)0.56200 (6)0.02236 (15)
P30.28988 (8)0.16136 (7)0.62215 (6)0.02600 (16)
O10.2843 (2)−0.2032 (2)0.62940 (17)0.0356 (5)
O20.1635 (2)−0.2086 (2)0.42722 (15)0.0313 (4)
O30.2961 (2)0.0217 (2)0.55757 (19)0.0398 (5)
O40.0375 (2)−0.1674 (2)0.60834 (15)0.0285 (4)
O5−0.2360 (2)−0.2181 (2)0.65479 (16)0.0306 (4)
O6−0.1935 (2)−0.40394 (19)0.51838 (17)0.0372 (5)
O7−0.1447 (2)−0.1662 (2)0.45304 (16)0.0293 (4)
O80.2395 (2)0.1384 (2)0.74021 (16)0.0401 (5)
O90.4383 (2)0.2884 (2)0.6012 (2)0.0453 (6)
O100.7313 (2)0.3898 (2)0.64060 (18)0.0321 (4)
N10.9215 (3)0.0733 (2)0.74960 (18)0.0291 (5)
H1A1.02420.09290.74860.044*
H1B0.89920.12650.70230.044*
H1C0.8609−0.02010.72550.044*
N20.4244 (3)0.6264 (2)0.6809 (2)0.0320 (5)
H2A0.38110.53810.64130.048*
H2B0.52790.67110.67010.048*
H2C0.37550.67660.65550.048*
C10.8890 (3)0.1076 (3)0.8692 (2)0.0269 (5)
C20.7377 (3)0.0942 (3)0.8895 (2)0.0303 (6)
C30.7148 (4)0.1246 (3)1.0057 (3)0.0382 (7)
H30.61550.11741.02360.046*
C40.8337 (4)0.1648 (3)1.0948 (3)0.0428 (8)
H40.81360.18241.17150.051*
C50.9816 (4)0.1791 (4)1.0705 (3)0.0453 (8)
H51.06290.20841.13040.054*
C61.0098 (4)0.1498 (3)0.9566 (3)0.0392 (7)
H61.10980.15850.93940.047*
C70.6060 (4)0.0507 (4)0.7933 (3)0.0455 (8)
H7A0.64450.11150.73250.068*
H7B0.51720.06130.82400.068*
H7C0.5724−0.04840.76200.068*
C80.4056 (3)0.6151 (3)0.8077 (2)0.0311 (6)
C90.2550 (4)0.5396 (3)0.8433 (3)0.0357 (7)
C100.2453 (4)0.5348 (3)0.9631 (3)0.0445 (8)
H100.14610.48320.99060.053*
C110.3771 (5)0.6038 (4)1.0416 (3)0.0489 (8)
H110.36670.59871.12110.059*
C120.5246 (4)0.6802 (4)1.0034 (3)0.0536 (9)
H120.61390.72821.05710.064*
C130.5409 (4)0.6862 (3)0.8859 (3)0.0414 (7)
H130.64080.73700.85920.050*
C140.1088 (4)0.4694 (4)0.7588 (3)0.0517 (9)
H14A0.09230.54250.72320.078*
H14B0.01770.41540.79960.078*
H14C0.12260.40540.69950.078*
H1100.6282 (11)0.348 (3)0.633 (3)0.057 (11)*
H2100.770 (4)0.331 (3)0.617 (3)0.088 (15)*
H3100.767 (4)0.464 (2)0.603 (3)0.079 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0218 (3)0.0296 (4)0.0229 (3)0.0147 (3)0.0036 (3)0.0058 (3)
P20.0215 (3)0.0218 (3)0.0225 (3)0.0082 (3)0.0057 (3)0.0030 (3)
P30.0185 (3)0.0275 (4)0.0299 (4)0.0086 (3)0.0005 (3)0.0025 (3)
O10.0377 (11)0.0476 (12)0.0310 (11)0.0275 (10)−0.0009 (9)0.0066 (9)
O20.0350 (10)0.0473 (12)0.0210 (9)0.0265 (9)0.0047 (8)0.0049 (8)
O30.0369 (11)0.0293 (10)0.0565 (14)0.0154 (9)0.0238 (10)0.0090 (9)
O40.0213 (9)0.0425 (11)0.0216 (9)0.0142 (8)0.0045 (7)0.0026 (8)
O50.0236 (9)0.0344 (10)0.0308 (10)0.0099 (8)0.0107 (8)0.0020 (8)
O60.0477 (13)0.0247 (10)0.0369 (12)0.0136 (9)0.0109 (10)0.0026 (9)
O70.0198 (9)0.0364 (10)0.0312 (10)0.0102 (8)0.0027 (7)0.0139 (8)
O80.0379 (11)0.0550 (14)0.0246 (10)0.0191 (10)−0.0039 (9)0.0024 (9)
O90.0206 (10)0.0385 (12)0.0654 (16)0.0028 (9)−0.0009 (10)0.0085 (11)
O100.0235 (10)0.0306 (11)0.0408 (12)0.0106 (9)0.0030 (9)0.0052 (9)
N10.0302 (12)0.0319 (12)0.0253 (12)0.0140 (10)0.0049 (9)0.0024 (9)
N20.0292 (12)0.0334 (13)0.0324 (13)0.0128 (10)0.0054 (10)0.0041 (10)
C10.0327 (14)0.0254 (13)0.0225 (13)0.0129 (11)0.0047 (11)0.0026 (10)
C20.0348 (15)0.0285 (14)0.0277 (14)0.0133 (12)0.0053 (12)0.0063 (11)
C30.0427 (17)0.0471 (18)0.0327 (16)0.0249 (15)0.0159 (13)0.0113 (13)
C40.066 (2)0.0483 (19)0.0228 (15)0.0332 (17)0.0109 (14)0.0035 (13)
C50.052 (2)0.057 (2)0.0261 (16)0.0254 (17)−0.0059 (14)0.0004 (14)
C60.0339 (15)0.0509 (19)0.0329 (16)0.0194 (14)0.0021 (13)0.0026 (14)
C70.0324 (16)0.063 (2)0.0357 (17)0.0160 (16)0.0044 (13)0.0086 (15)
C80.0341 (15)0.0313 (14)0.0317 (15)0.0176 (12)0.0047 (12)0.0057 (12)
C90.0398 (16)0.0298 (15)0.0350 (16)0.0135 (13)0.0053 (13)0.0025 (12)
C100.057 (2)0.0418 (18)0.0396 (18)0.0242 (16)0.0180 (16)0.0109 (14)
C110.069 (2)0.052 (2)0.0338 (18)0.0326 (19)0.0072 (17)0.0085 (15)
C120.048 (2)0.071 (2)0.0391 (19)0.0263 (19)−0.0116 (16)0.0009 (17)
C130.0350 (16)0.0500 (19)0.0409 (18)0.0202 (15)0.0024 (13)0.0073 (15)
C140.0348 (17)0.049 (2)0.052 (2)0.0033 (15)0.0034 (15)−0.0024 (16)

Geometric parameters (Å, °)

P1—O11.461 (2)C2—C31.395 (4)
P1—O21.491 (2)C2—C71.504 (4)
P1—O31.591 (2)C3—C41.374 (4)
P1—O41.6075 (19)C3—H30.9300
P2—O61.480 (2)C4—C51.367 (5)
P2—O51.4830 (19)C4—H40.9300
P2—O71.5931 (19)C5—C61.383 (4)
P2—O41.594 (2)C5—H50.9300
P3—O81.465 (2)C6—H60.9300
P3—O91.483 (2)C7—H7A0.9600
P3—O31.590 (2)C7—H7B0.9600
P3—O7i1.6035 (19)C7—H7C0.9600
O7—P3i1.6035 (19)C8—C91.378 (4)
O10—H1100.862 (10)C8—C131.388 (4)
O10—H2100.863 (10)C9—C101.393 (4)
O10—H3100.864 (10)C9—C141.496 (4)
N1—C11.470 (3)C10—C111.367 (5)
N1—H1A0.8900C10—H100.9300
N1—H1B0.8900C11—C121.369 (5)
N1—H1C0.8900C11—H110.9300
N2—C81.489 (3)C12—C131.375 (5)
N2—H2A0.8900C12—H120.9300
N2—H2B0.8900C13—H130.9300
N2—H2C0.8900C14—H14A0.9600
C1—C61.370 (4)C14—H14B0.9600
C1—C21.390 (4)C14—H14C0.9600
O1—P1—O2118.49 (11)C4—C3—C2122.3 (3)
O1—P1—O3110.27 (13)C4—C3—H3118.8
O2—P1—O3106.30 (12)C2—C3—H3118.8
O1—P1—O4108.90 (11)C5—C4—C3120.0 (3)
O2—P1—O4109.44 (11)C5—C4—H4120.0
O3—P1—O4102.21 (11)C3—C4—H4120.0
O6—P2—O5118.69 (12)C4—C5—C6119.7 (3)
O6—P2—O7108.57 (12)C4—C5—H5120.1
O5—P2—O7110.85 (11)C6—C5—H5120.1
O6—P2—O4111.40 (12)C1—C6—C5119.4 (3)
O5—P2—O4106.38 (11)C1—C6—H6120.3
O7—P2—O499.21 (11)C5—C6—H6120.3
O8—P3—O9121.31 (13)C2—C7—H7A109.5
O8—P3—O3111.13 (13)C2—C7—H7B109.5
O9—P3—O3107.21 (12)H7A—C7—H7B109.5
O8—P3—O7i106.23 (11)C2—C7—H7C109.5
O9—P3—O7i107.42 (12)H7A—C7—H7C109.5
O3—P3—O7i101.72 (12)H7B—C7—H7C109.5
P3—O3—P1137.49 (13)C9—C8—C13122.6 (3)
P2—O4—P1133.83 (12)C9—C8—N2119.2 (2)
P2—O7—P3i129.82 (12)C13—C8—N2118.2 (3)
H110—O10—H210112 (2)C8—C9—C10116.4 (3)
H110—O10—H310110 (2)C8—C9—C14122.2 (3)
H210—O10—H310110 (2)C10—C9—C14121.4 (3)
C1—N1—H1A109.5C11—C10—C9122.0 (3)
C1—N1—H1B109.5C11—C10—H10119.0
H1A—N1—H1B109.5C9—C10—H10119.0
C1—N1—H1C109.5C10—C11—C12120.2 (3)
H1A—N1—H1C109.5C10—C11—H11119.9
H1B—N1—H1C109.5C12—C11—H11119.9
C8—N2—H2A109.5C11—C12—C13120.1 (3)
C8—N2—H2B109.5C11—C12—H12120.0
H2A—N2—H2B109.5C13—C12—H12120.0
C8—N2—H2C109.5C12—C13—C8118.8 (3)
H2A—N2—H2C109.5C12—C13—H13120.6
H2B—N2—H2C109.5C8—C13—H13120.6
C6—C1—C2122.8 (3)C9—C14—H14A109.5
C6—C1—N1118.0 (2)C9—C14—H14B109.5
C2—C1—N1119.1 (2)H14A—C14—H14B109.5
C1—C2—C3115.7 (3)C9—C14—H14C109.5
C1—C2—C7122.8 (3)H14A—C14—H14C109.5
C3—C2—C7121.5 (3)H14B—C14—H14C109.5

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O10—H110···O90.86 (1)1.62 (1)2.469 (3)170 (3)
O10—H210···O2ii0.86 (1)1.69 (1)2.550 (3)177 (3)
O10—H310···O6iii0.86 (1)1.67 (1)2.524 (3)171 (3)
N1—H1A···O8iv0.891.862.753 (3)177
N1—H1B···O2ii0.891.982.853 (3)168
N1—H1C···O5iv0.891.922.800 (3)169
N2—H2A···O6i0.892.353.085 (4)140
N2—H2B···O5iii0.892.022.904 (3)176
N2—H2C···O1v0.891.832.710 (3)170

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (i) −x, −y, −z+1; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5337).

References

  • Akriche, S. & Rzaigui, M. (2000). Solid State Sci.2, 397–403.
  • Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem.183, 1996–2005.
  • Baur, W. H. (1974). Acta Cryst. B30, 1195–1215.
  • Blessing, R. H. (1986). Acta Cryst. B42, 613–621.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal impact GbR, Bonn, Germany.
  • Brown, I. D. (1976). Acta Cryst. A32, 24–31.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  • Khemiri, H., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o1152. [PMC free article] [PubMed]
  • Larafa, K., Mahjoub, A., Rzaigui, M. & Durif, A. (1997). Eur. J. Solid State Inorg. Chem.34, 481–494.
  • Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem.531, 167–175.
  • Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography