PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m346–m347.
Published online 2010 February 27. doi:  10.1107/S1600536810006811
PMCID: PMC2983631

μ-Succinato-bis­[aqua­(2,2′:6′,2′′-terpyridine)copper(II)] dinitrate dihydrate

Abstract

The title compound, [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2O, was synthesized under hydro­thermal conditions. The dinuclear copper complex is located on a crystallographic inversion centre. The CuII ion is penta­coordinated in a tetra­gonal–pyramidal geometry, with one O atom of a succinate dianion and three N atoms of a 2,2′:6′,2′′-terpyridine ligand occupying the basal plane, and a water O atom located at the apical site. In the crystal structure, O—H(...)O hydrogen bonding links the mol­ecules into a chain parallel to the a axis.

Related literature

For background to the use of saturated aliphatic carboxyl­ate ligands in the preparation of metal-organic complexes, see: Brusau et al. (2000 [triangle]); Rastsvetaeva et al. (1996 [triangle]). For related structures, see: Li et al. (2009 [triangle]); Ke et al. (2009 [triangle]); Jin et al. (2008 [triangle]); He & Huang (2008 [triangle]); He et al. (2007 [triangle]); Duangthongyou & Siripaisarnpipat (2008 [triangle]); Liu (2009 [triangle]); Ng (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m346-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2O
  • M r = 905.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m346-efi1.jpg
  • a = 7.397 (4) Å
  • b = 10.650 (5) Å
  • c = 12.574 (6) Å
  • α = 70.196 (9)°
  • β = 83.512 (9)°
  • γ = 83.836 (10)°
  • V = 923.5 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.23 mm−1
  • T = 296 K
  • 0.34 × 0.32 × 0.28 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.679, T max = 0.724
  • 4998 measured reflections
  • 3211 independent reflections
  • 2951 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.137
  • S = 0.98
  • 3211 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006811/kj2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006811/kj2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes (Duangthongyou & Siripaisarnpipat, 2008; He & Huang, 2008; Jin et al., 2008; Li et al., 2009; Liu, 2009; Ke et al., 2009). The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva et al., 1996; Brusau et al., 2000; He et al., 2007). We report herein the synthesis and crystal stucture of a new succinate complex [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2.2H2O.

In the centrosymmetric dinuclear copper complex (Fig. 1) each of the CuII ions is pentacoordinated, with one O atom of a succinate dianion and three N atoms of a 2,2':6',2''-terpyridine ligand occupying the basal plane, and a water O atom completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N2, N3, N4 and O1 are nearly coplanar, with the maximum deviation from the least-squares plane of 0.0292 (13) Å. The Cu atom is displaced by 0.1281 (11) Å from this plane towards the apical O atom.

With O—H···O hydrogen bonds between the coordinated water molecule and the carboxylate group, (Table 1), a one-dimensional chain running parallel to the a axis is formed as shown in Fig.2. The uncoordinated water provides an extra link and thereby strengthens the chain and also forms a link to the nitrate counterions.

Experimental

The title complound was synthesized hydrothermally in a teflon-lined autoclave (25 ml) by heating a mixture of succinic acid (0.2 mmol), 2,2':6',2''-terpyridine (0.4 mmol), Cu(NO3)2.4H2O (0.2 mmol) and Et3N (1 ml) in water (10 ml) at 393 K for 3 days. The autoclave was slowly cooled to room temperature. Crystals suitable for X-ray analysis were obtained directly from the reaction product.

Refinement

The positions of the water H atoms, obtained from a difference Fourier map, were constrained to ideal water geometry and fixed in the final stages of refinement (O—H 0.85 Å), All other H atoms were included in calculated positions, with C—H bond lengths fixed at 0.97 Å (methylene —CH2—) or 0.93Å (aryl group) and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.2 Ueq(C, O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2OZ = 1
Mr = 905.77F(000) = 464
Triclinic, P1Dx = 1.629 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.397 (4) ÅCell parameters from 4421 reflections
b = 10.650 (5) Åθ = 3.3–28.0°
c = 12.574 (6) ŵ = 1.23 mm1
α = 70.196 (9)°T = 296 K
β = 83.512 (9)°Block, colourless
γ = 83.836 (10)°0.34 × 0.32 × 0.28 mm
V = 923.5 (8) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3211 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
graphiteRint = 0.096
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.679, Tmax = 0.724k = −12→11
4998 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137w = 1/[σ2(Fo2) + (0.1057P)2 + 0.320P] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3211 reflectionsΔρmax = 0.70 e Å3
263 parametersΔρmin = −0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.24585 (4)0.64732 (3)0.22948 (2)0.0286 (2)
O1W0.5317 (3)0.5692 (3)0.1875 (2)0.0493 (6)
H1WA0.63820.59710.17170.059*
H1WB0.52960.50650.16030.059*
N20.2116 (3)0.4762 (3)0.3654 (2)0.0341 (6)
N30.2929 (3)0.7096 (3)0.3510 (2)0.0334 (6)
N40.2612 (4)0.8463 (3)0.1423 (2)0.0356 (6)
C10.1650 (5)0.3580 (4)0.3636 (3)0.0448 (8)
H10.14500.34990.29460.054*
C20.1462 (5)0.2482 (4)0.4615 (4)0.0540 (9)
H20.11500.16740.45810.065*
C30.1743 (5)0.2605 (4)0.5637 (3)0.0573 (10)
H30.16120.18820.63040.069*
C40.2222 (5)0.3814 (4)0.5667 (3)0.0501 (9)
H40.24220.39140.63510.060*
C50.2399 (4)0.4875 (3)0.4657 (3)0.0371 (7)
C60.2890 (4)0.6223 (3)0.4581 (3)0.0360 (7)
C70.3259 (5)0.6642 (4)0.5456 (3)0.0495 (9)
H70.32560.60490.61950.059*
C80.3633 (5)0.7967 (5)0.5210 (3)0.0558 (10)
H80.38830.82600.57930.067*
C90.3642 (5)0.8862 (4)0.4107 (4)0.0516 (9)
H90.38980.97470.39420.062*
C100.3253 (4)0.8388 (3)0.3258 (3)0.0381 (7)
C110.3088 (4)0.9175 (3)0.2045 (3)0.0378 (7)
C120.3356 (5)1.0526 (3)0.1567 (3)0.0509 (9)
H120.37091.09980.20010.061*
C130.3088 (5)1.1167 (4)0.0423 (4)0.0569 (10)
H130.32671.20720.00830.068*
C140.2558 (5)1.0446 (4)−0.0195 (3)0.0526 (9)
H140.23421.0863−0.09530.063*
C150.2352 (5)0.9106 (3)0.0317 (3)0.0427 (8)
H150.20200.8621−0.01130.051*
O10.1725 (3)0.5935 (2)0.11084 (18)0.0346 (5)
O2−0.1129 (3)0.6332 (2)0.17197 (19)0.0418 (5)
C16−0.0007 (4)0.5965 (3)0.1065 (2)0.0288 (6)
C17−0.0602 (4)0.5554 (3)0.0128 (3)0.0388 (7)
H17A−0.18340.52720.03370.047*
H17B−0.06320.6329−0.05560.047*
N10.1320 (5)0.8852 (4)0.7310 (3)0.0583 (9)
O30.2712 (7)0.9214 (6)0.7484 (4)0.1279 (18)
O40.0270 (5)0.9562 (4)0.6617 (3)0.0940 (12)
O50.1130 (8)0.7657 (4)0.7705 (4)0.1219 (17)
O2W0.5518 (4)0.3538 (3)0.1018 (3)0.0623 (7)
H2WA0.61840.28250.13020.075*
H2WB0.60290.39630.03740.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0298 (3)0.0333 (3)0.0296 (3)0.00097 (16)−0.00715 (15)−0.01870 (17)
O1W0.0279 (11)0.0587 (15)0.0753 (16)0.0008 (10)0.0012 (11)−0.0434 (13)
N20.0310 (13)0.0389 (13)0.0353 (13)0.0019 (11)−0.0049 (10)−0.0166 (11)
N30.0310 (13)0.0439 (14)0.0343 (12)0.0067 (11)−0.0098 (10)−0.0255 (11)
N40.0366 (14)0.0353 (13)0.0397 (13)0.0043 (11)−0.0072 (11)−0.0193 (11)
C10.0395 (17)0.0459 (18)0.0524 (19)−0.0009 (15)−0.0061 (14)−0.0205 (15)
C20.0411 (19)0.0442 (19)0.071 (2)−0.0029 (16)−0.0040 (17)−0.0116 (17)
C30.0428 (19)0.059 (2)0.053 (2)0.0043 (17)0.0019 (16)−0.0007 (17)
C40.0449 (19)0.065 (2)0.0345 (16)0.0085 (17)−0.0017 (14)−0.0136 (16)
C50.0278 (15)0.0488 (18)0.0330 (14)0.0087 (13)−0.0025 (11)−0.0149 (13)
C60.0273 (15)0.0522 (18)0.0340 (15)0.0081 (13)−0.0058 (11)−0.0233 (13)
C70.0391 (18)0.080 (3)0.0383 (17)0.0101 (18)−0.0097 (14)−0.0334 (17)
C80.046 (2)0.084 (3)0.060 (2)0.0086 (19)−0.0143 (17)−0.054 (2)
C90.0449 (19)0.060 (2)0.069 (2)0.0026 (17)−0.0116 (17)−0.0462 (19)
C100.0298 (15)0.0463 (18)0.0511 (18)0.0047 (13)−0.0087 (13)−0.0334 (15)
C110.0284 (15)0.0378 (16)0.0547 (19)0.0052 (12)−0.0076 (13)−0.0262 (14)
C120.047 (2)0.0402 (18)0.075 (3)0.0030 (16)−0.0072 (18)−0.0330 (18)
C130.050 (2)0.0347 (18)0.080 (3)0.0070 (16)−0.0016 (19)−0.0162 (18)
C140.045 (2)0.050 (2)0.054 (2)0.0114 (17)−0.0087 (16)−0.0086 (16)
C150.0404 (17)0.0430 (18)0.0440 (17)0.0064 (14)−0.0092 (14)−0.0145 (14)
O10.0289 (11)0.0497 (13)0.0371 (11)0.0008 (9)−0.0093 (8)−0.0286 (10)
O20.0328 (11)0.0611 (14)0.0450 (12)0.0029 (10)−0.0050 (9)−0.0364 (11)
C160.0299 (14)0.0288 (13)0.0329 (14)0.0023 (11)−0.0079 (11)−0.0165 (11)
C170.0298 (15)0.0524 (19)0.0490 (17)0.0093 (14)−0.0127 (13)−0.0368 (15)
N10.063 (2)0.059 (2)0.0496 (17)0.0021 (17)0.0010 (16)−0.0169 (15)
O30.120 (4)0.167 (5)0.118 (3)−0.050 (3)−0.041 (3)−0.054 (3)
O40.083 (3)0.089 (3)0.100 (3)0.016 (2)−0.025 (2)−0.020 (2)
O50.164 (5)0.074 (3)0.105 (3)−0.018 (3)−0.020 (3)0.005 (2)
O2W0.0656 (17)0.0518 (15)0.0742 (18)0.0006 (13)−0.0035 (14)−0.0290 (14)

Geometric parameters (Å, °)

Cu1—O11.917 (2)C8—C91.391 (6)
Cu1—N31.937 (3)C8—H80.9300
Cu1—N42.038 (3)C9—C101.394 (5)
Cu1—N22.049 (3)C9—H90.9300
Cu1—O1W2.260 (2)C10—C111.483 (5)
O1W—H1WA0.8501C11—C121.385 (5)
O1W—H1WB0.8501C12—C131.394 (6)
N2—C51.348 (4)C12—H120.9300
N2—C11.349 (5)C13—C141.372 (6)
N3—C101.345 (4)C13—H130.9300
N3—C61.351 (4)C14—C151.370 (5)
N4—C151.351 (4)C14—H140.9300
N4—C111.354 (4)C15—H150.9300
C1—C21.387 (5)O1—C161.285 (4)
C1—H10.9300O2—C161.230 (3)
C2—C31.376 (6)C16—C171.510 (4)
C2—H20.9300C17—C17i1.503 (6)
C3—C41.386 (6)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.389 (5)N1—O31.204 (6)
C4—H40.9300N1—O51.217 (5)
C5—C61.487 (5)N1—O41.231 (5)
C6—C71.383 (5)O2W—H2WA0.8499
C7—C81.390 (6)O2W—H2WB0.8500
C7—H70.9300
O1—Cu1—N3173.78 (9)C6—C7—H7120.6
O1—Cu1—N498.53 (10)C8—C7—H7120.6
N3—Cu1—N480.04 (11)C7—C8—C9121.1 (3)
O1—Cu1—N2100.55 (11)C7—C8—H8119.5
N3—Cu1—N279.94 (12)C9—C8—H8119.5
N4—Cu1—N2158.56 (11)C8—C9—C10117.8 (4)
O1—Cu1—O1W86.91 (9)C8—C9—H9121.1
N3—Cu1—O1W99.30 (10)C10—C9—H9121.1
N4—Cu1—O1W100.14 (10)N3—C10—C9120.2 (3)
N2—Cu1—O1W90.58 (10)N3—C10—C11112.8 (3)
Cu1—O1W—H1WA138.1C9—C10—C11127.0 (3)
Cu1—O1W—H1WB111.0N4—C11—C12121.6 (3)
H1WA—O1W—H1WB107.7N4—C11—C10114.1 (3)
C5—N2—C1118.7 (3)C12—C11—C10124.3 (3)
C5—N2—Cu1114.3 (2)C11—C12—C13118.9 (3)
C1—N2—Cu1127.0 (2)C11—C12—H12120.6
C10—N3—C6122.5 (3)C13—C12—H12120.6
C10—N3—Cu1118.7 (2)C14—C13—C12119.2 (3)
C6—N3—Cu1118.8 (2)C14—C13—H13120.4
C15—N4—C11118.5 (3)C12—C13—H13120.4
C15—N4—Cu1127.4 (2)C15—C14—C13119.3 (4)
C11—N4—Cu1114.1 (2)C15—C14—H14120.3
N2—C1—C2122.0 (3)C13—C14—H14120.3
N2—C1—H1119.0N4—C15—C14122.4 (3)
C2—C1—H1119.0N4—C15—H15118.8
C3—C2—C1119.0 (4)C14—C15—H15118.8
C3—C2—H2120.5C16—O1—Cu1115.18 (17)
C1—C2—H2120.5O2—C16—O1123.0 (3)
C2—C3—C4119.5 (3)O2—C16—C17121.3 (3)
C2—C3—H3120.2O1—C16—C17115.7 (2)
C4—C3—H3120.2C17i—C17—C16114.3 (3)
C3—C4—C5118.7 (4)C17i—C17—H17A108.7
C3—C4—H4120.6C16—C17—H17A108.7
C5—C4—H4120.6C17i—C17—H17B108.7
N2—C5—C4122.0 (3)C16—C17—H17B108.7
N2—C5—C6114.2 (3)H17A—C17—H17B107.6
C4—C5—C6123.8 (3)O3—N1—O5116.3 (5)
N3—C6—C7119.7 (3)O3—N1—O4123.9 (5)
N3—C6—C5112.7 (3)O5—N1—O4118.6 (5)
C7—C6—C5127.6 (3)H2WA—O2W—H2WB107.7
C6—C7—C8118.7 (3)
O1—Cu1—N2—C5−174.99 (19)N2—C5—C6—N31.1 (4)
N3—Cu1—N2—C5−1.29 (19)C4—C5—C6—N3−178.3 (3)
N4—Cu1—N2—C5−22.4 (4)N2—C5—C6—C7180.0 (3)
O1W—Cu1—N2—C598.0 (2)C4—C5—C6—C70.6 (5)
O1—Cu1—N2—C15.0 (3)N3—C6—C7—C81.0 (5)
N3—Cu1—N2—C1178.7 (3)C5—C6—C7—C8−177.8 (3)
N4—Cu1—N2—C1157.6 (3)C6—C7—C8—C90.0 (5)
O1W—Cu1—N2—C1−81.9 (3)C7—C8—C9—C100.3 (5)
N4—Cu1—N3—C10−4.6 (2)C6—N3—C10—C92.7 (5)
N2—Cu1—N3—C10−176.9 (2)Cu1—N3—C10—C9−178.4 (2)
O1W—Cu1—N3—C1094.1 (2)C6—N3—C10—C11−175.6 (2)
N4—Cu1—N3—C6174.3 (2)Cu1—N3—C10—C113.3 (3)
N2—Cu1—N3—C62.0 (2)C8—C9—C10—N3−1.6 (5)
O1W—Cu1—N3—C6−86.9 (2)C8—C9—C10—C11176.4 (3)
O1—Cu1—N4—C15−3.3 (3)C15—N4—C11—C12−1.7 (5)
N3—Cu1—N4—C15−177.1 (3)Cu1—N4—C11—C12176.3 (2)
N2—Cu1—N4—C15−156.0 (3)C15—N4—C11—C10177.2 (3)
O1W—Cu1—N4—C1585.1 (3)Cu1—N4—C11—C10−4.8 (3)
O1—Cu1—N4—C11178.9 (2)N3—C10—C11—N41.2 (4)
N3—Cu1—N4—C115.1 (2)C9—C10—C11—N4−177.0 (3)
N2—Cu1—N4—C1126.2 (4)N3—C10—C11—C12−179.9 (3)
O1W—Cu1—N4—C11−92.7 (2)C9—C10—C11—C122.0 (5)
C5—N2—C1—C2−0.2 (5)N4—C11—C12—C131.4 (5)
Cu1—N2—C1—C2179.8 (2)C10—C11—C12—C13−177.4 (3)
N2—C1—C2—C30.6 (5)C11—C12—C13—C140.3 (5)
C1—C2—C3—C4−0.6 (5)C12—C13—C14—C15−1.7 (6)
C2—C3—C4—C50.2 (5)C11—N4—C15—C140.3 (5)
C1—N2—C5—C4−0.1 (4)Cu1—N4—C15—C14−177.4 (3)
Cu1—N2—C5—C4179.9 (2)C13—C14—C15—N41.5 (5)
C1—N2—C5—C6−179.5 (3)N4—Cu1—O1—C16−90.9 (2)
Cu1—N2—C5—C60.5 (3)N2—Cu1—O1—C1679.3 (2)
C3—C4—C5—N20.1 (5)O1W—Cu1—O1—C16169.3 (2)
C3—C4—C5—C6179.5 (3)Cu1—O1—C16—O21.2 (4)
C10—N3—C6—C7−2.4 (4)Cu1—O1—C16—C17179.5 (2)
Cu1—N3—C6—C7178.7 (2)O2—C16—C17—C17i−145.5 (4)
C10—N3—C6—C5176.6 (2)O1—C16—C17—C17i36.1 (5)
Cu1—N3—C6—C5−2.3 (3)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1ii0.852.333.101 (4)150
O2W—H2WA···O3iii0.852.323.138 (7)162
O1W—H1WB···O2W0.851.982.831 (4)174
O1W—H1WA···O2iv0.851.922.755 (3)167

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2141).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem.153, 1–8.
  • Duangthongyou, T. & Siripaisarnpipat, S. (2008). Acta Cryst. E64, m560. [PMC free article] [PubMed]
  • He, Q. & Huang, B.-J. (2008). Acta Cryst. E64, m237.
  • He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.
  • Jin, S., Wang, D., Yu, Y., Luo, G. & Ye, Y. (2008). Acta Cryst. E64, m448–m449. [PMC free article] [PubMed]
  • Ke, X.-J., Li, D.-S., Zhao, J., He, Q.-F. & Li, C. (2009). Acta Cryst. E65, m527. [PMC free article] [PubMed]
  • Li, Z.-F., Wang, C.-X. & Wang, P. (2009). Acta Cryst. E65, m1095. [PMC free article] [PubMed]
  • Liu, X.-W. (2009). Acta Cryst. E65, m574. [PMC free article] [PubMed]
  • Ng, S. W. (1998). Acta Cryst. C54, 745–750.
  • Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr.211, 808–810.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography