PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o700–o701.
Published online 2010 February 27. doi:  10.1107/S1600536810006562
PMCID: PMC2983630

4-(3,3-Dimethyl­perhydro-1,3-oxa­zolo[3,4-a]pyridin-1-yl)-2,8-bis­(tri­fluoro­meth­yl)quinoline

Abstract

An L-shaped conformation is found in the title mol­ecule, C20H20F6N2O, the C—C—C—C torsion angle linking the two fused-ring systems being −92.80 (19)°. The oxazole ring adopts an envelope conformation [the N atom lies 0.579 (2) Å out of the plane defined by the remaining atoms], and the piperidine ring has a chair conformation. Supra­molecular chains are found in the crystal structure that are sustained by C—H(...)π and π–π [3.6089 (10) Å] inter­actions.

Related literature

For information on mefloquine and its derivatives, see: Maguire et al. (2006 [triangle]); Croft & Herxheimer (2002 [triangle]); Lima et al. (2002 [triangle]); Biot et al. (2000 [triangle]); Roesner et al. (1981 [triangle]); Kunin & Ellis (2007 [triangle]). For the synthesis of 1,3-oxazolidines, see: Bergmann et al. (1953 [triangle]); Oh et al. (2000 [triangle]); Saba et al. (2007 [triangle]); Page et al. (2007 [triangle]); Kukharev et al. (2007 [triangle]); Delgado et al. (1987 [triangle]). For the biological activity of 1,3-oxazolidines, see: Moloney et al. (1998 [triangle]); Andes et al. (2002 [triangle]); Kumar et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o700-scheme1.jpg

Experimental

Crystal data

  • C20H20F6N2O
  • M r = 418.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o700-efi1.jpg
  • a = 8.4192 (3) Å
  • b = 9.1833 (4) Å
  • c = 12.4424 (4) Å
  • α = 87.912 (2)°
  • β = 86.666 (2)°
  • γ = 78.804 (2)°
  • V = 941.78 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 120 K
  • 0.65 × 0.30 × 0.25 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.643, T max = 0.746
  • 16907 measured reflections
  • 4275 independent reflections
  • 3107 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.141
  • S = 1.06
  • 4275 reflections
  • 264 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006562/ez2202sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006562/ez2202Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

Mefloquine, manufactured as the racemic erythro hydrochloride salt is a synthetic analogue of quinine used in the prevention and treatment for malaria in combination with other drugs (Maguire et al., 2006). However, despite its efficacy, this orally-administered drug possesses several important physical and psychological adverse side-effects, such as birth defects, anxiety, aggression, seizures, nightmares, neuropathy, insomnia, central nervous system problems, acute depression, urinary disorders, etc. (Croft & Herxheimer, 2002). Due to these effects, mefloquine analogues have been synthesized with the goals of increasing the efficacy and eliminating adverse side-effects (Lima et al., 2002; Biot et al., 2000; Roesner et al., 1981). Mefloquine derivatives are also undergoing tests against other diseases, for example, as anti-viral and anti-tuberculosis agents (Kunin & Ellis, 2007). In the quest for new derivatives, the title compound, 5-[2,8-bis(trifluoromethyl)quinolin-4-yl)-hexahydro-3H-oxazolo[3,4-a]pyridine-2-oxaindolizidine (I) has been obtained.

Oxazolidines are frequently prepared from 2-amino-1-hydroxyalkanes and carbonyl compounds (Bergmann et al., 1953; Oh et al., 2000; Saba et al., 2007; Page et al., 2007); in particular cases, azeotropic removal of water or the use of a catalyst is involved (Page et al., 2007). However, problems of stability of oxazolidines and formation of tautomeric mixtures of the oxazolidines and the corresponding imines can limit or complicate this synthetic route (Page et al., 2007). Alternative routes to hexahydro-3H-oxazolo[3,4-a]pyridine derivatives include the Hg(OAc)2 catalysed cyclization of 2-(vinyloxymethyl)piperidine (Kukharev et al., 2007) and use of 1-naphthalenyl 2-pyridinyl ketone (Delgado et al., 1987). 1,3-Oxazolidine derivatives, in general, have been shown to have useful biological activities (Moloney et al., 1998; Andes et al., 2002; Kumar et al., 2009). The title compound, (I), was isolated unexpectedly from a solution of mefloquine hydrochloride and 2-hydroxybenzoic acid in acetone, followed by initial by recrystallisation from isopropanol, and finally from EtOH.

The molecular structure of (I), Fig. 1, adopts an L-shaped conformation with the quinoline group being approximately orthogonal to the rest of the molecule; for example, the C2–C3–C12–C16 torsion angle is -92.80 (19) °. The five-membered oxazole ring adopts an envelope conformation with the N2 atom lying 0.579 (2) Å out of the plane defined by the remaining atoms. The piperidine ring adopts a chair conformation. The presence of C–H···π, Table 1, and π–π [ring centroid(C4–C9)···ring centroid(C4–C9)i distance = 3.6089 (10) Å for i: 1-x, 1-y, 2-z] interactions feature in the crystal packing. Thus, centrosymmetrically related molecules are connected via π–π interactions, and these are linked into a supramolecular chain via C–H···π contacts, Fig. 2.

Experimental

A mixture of racemic erythro mefloquinium chloride (1 mmol) and 2-hydroxybenzoic acid (1 mmol) in acetone (20 ml) was refluxed for 3 h. The reaction mixture was rotary evaporated and the residue was taken up in isopropanol. Two crops of crystals were collected on maintaining the solution at room temperature. From the second crop, on recrystallisation from EtOH, a small amount of the title compound was obtained, m.p. 424–426 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of a supramolecular chain in (I) aligned along the a axis. The C–H···π and π–π interactions are shown as brown and purple dashed lines, respectively. Colour code: F, cyan; O, red; ...

Crystal data

C20H20F6N2OZ = 2
Mr = 418.38F(000) = 432
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4192 (3) ÅCell parameters from 12184 reflections
b = 9.1833 (4) Åθ = 2.9–27.5°
c = 12.4424 (4) ŵ = 0.13 mm1
α = 87.912 (2)°T = 120 K
β = 86.666 (2)°Block, colourless
γ = 78.804 (2)°0.65 × 0.30 × 0.25 mm
V = 941.78 (6) Å3

Data collection

Nonius KappaCCD area-detector diffractometer4275 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3107 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.0°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −11→11
Tmin = 0.643, Tmax = 0.746l = −16→16
16907 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0739P)2 + 0.249P] where P = (Fo2 + 2Fc2)/3
4275 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.24470 (15)0.13631 (13)0.70186 (12)0.0465 (4)
F20.48941 (14)0.02882 (12)0.72734 (10)0.0376 (3)
F30.31274 (17)0.05404 (14)0.85902 (11)0.0489 (4)
F41.00086 (13)0.26530 (14)0.94688 (10)0.0398 (3)
F50.90320 (13)0.18513 (14)0.80980 (9)0.0369 (3)
F60.80523 (14)0.14596 (13)0.96979 (9)0.0357 (3)
O10.04978 (14)0.65337 (14)0.77211 (9)0.0225 (3)
N10.54732 (17)0.26383 (16)0.83292 (11)0.0209 (3)
N20.13591 (17)0.69425 (16)0.59985 (11)0.0208 (3)
C10.4030 (2)0.27072 (19)0.79573 (13)0.0205 (4)
C20.2882 (2)0.40134 (19)0.77803 (13)0.0208 (4)
H20.18660.39730.75010.025*
C30.3263 (2)0.53470 (19)0.80200 (13)0.0190 (4)
C40.4797 (2)0.53404 (19)0.84578 (13)0.0183 (4)
C50.5296 (2)0.6653 (2)0.87684 (13)0.0221 (4)
H50.45790.75850.87090.027*
C60.6799 (2)0.6584 (2)0.91518 (14)0.0248 (4)
H60.71140.74670.93600.030*
C70.7882 (2)0.5216 (2)0.92398 (14)0.0258 (4)
H70.89340.51880.94880.031*
C80.7437 (2)0.3925 (2)0.89724 (13)0.0222 (4)
C90.5868 (2)0.3955 (2)0.85806 (13)0.0195 (4)
C100.3631 (2)0.1221 (2)0.77122 (16)0.0273 (4)
C110.8617 (2)0.2472 (2)0.90593 (15)0.0280 (4)
C120.2119 (2)0.67903 (19)0.77676 (14)0.0200 (4)
H120.21500.75180.83410.024*
C13−0.0137 (2)0.7020 (2)0.66828 (14)0.0225 (4)
C14−0.1190 (2)0.8573 (2)0.67829 (16)0.0313 (5)
H14A−0.20440.85550.73510.047*
H14B−0.16850.88810.60970.047*
H14C−0.05160.92770.69660.047*
C15−0.1106 (2)0.5903 (2)0.63459 (16)0.0301 (4)
H15A−0.04190.49110.63430.045*
H15B−0.14860.61690.56220.045*
H15C−0.20400.59080.68540.045*
C160.2497 (2)0.7487 (2)0.66532 (13)0.0211 (4)
H160.21740.85910.66920.025*
C170.4194 (2)0.7103 (2)0.61295 (14)0.0248 (4)
H17A0.45410.60120.60940.030*
H17B0.49650.74880.65630.030*
C180.4196 (2)0.7800 (2)0.49901 (15)0.0290 (4)
H18A0.40130.88950.50370.035*
H18B0.52690.74630.46170.035*
C190.2881 (2)0.7372 (2)0.43406 (15)0.0289 (4)
H19A0.28250.79290.36430.035*
H19B0.31650.62990.41890.035*
C200.1239 (2)0.7705 (2)0.49433 (14)0.0251 (4)
H20A0.08960.87890.50350.030*
H20B0.04200.73590.45290.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0385 (7)0.0273 (7)0.0775 (10)−0.0082 (5)−0.0226 (7)−0.0122 (6)
F20.0292 (6)0.0254 (6)0.0579 (8)−0.0043 (5)0.0073 (5)−0.0162 (6)
F30.0677 (9)0.0281 (7)0.0531 (8)−0.0219 (6)0.0212 (7)−0.0005 (6)
F40.0252 (6)0.0483 (8)0.0446 (7)0.0006 (5)−0.0134 (5)−0.0066 (6)
F50.0292 (6)0.0482 (8)0.0290 (6)0.0045 (5)0.0007 (5)−0.0115 (5)
F60.0369 (7)0.0323 (7)0.0348 (6)−0.0004 (5)−0.0030 (5)0.0063 (5)
O10.0172 (6)0.0279 (7)0.0225 (6)−0.0056 (5)0.0007 (5)0.0008 (5)
N10.0202 (7)0.0227 (8)0.0199 (7)−0.0050 (6)0.0032 (6)−0.0019 (6)
N20.0192 (7)0.0215 (8)0.0218 (7)−0.0043 (6)−0.0002 (6)−0.0016 (6)
C10.0232 (9)0.0188 (9)0.0199 (8)−0.0063 (7)0.0041 (7)−0.0024 (7)
C20.0189 (8)0.0233 (9)0.0213 (9)−0.0065 (7)0.0010 (7)−0.0026 (7)
C30.0192 (8)0.0228 (9)0.0158 (8)−0.0065 (7)0.0025 (6)−0.0026 (7)
C40.0200 (8)0.0214 (9)0.0142 (8)−0.0068 (7)0.0026 (6)−0.0007 (7)
C50.0256 (9)0.0227 (9)0.0192 (8)−0.0084 (7)0.0014 (7)0.0001 (7)
C60.0287 (10)0.0292 (10)0.0199 (9)−0.0138 (8)−0.0012 (7)−0.0020 (7)
C70.0212 (9)0.0377 (11)0.0208 (9)−0.0109 (8)−0.0023 (7)−0.0008 (8)
C80.0189 (8)0.0319 (10)0.0154 (8)−0.0048 (7)0.0011 (6)0.0002 (7)
C90.0211 (8)0.0247 (9)0.0138 (8)−0.0080 (7)0.0023 (6)0.0004 (7)
C100.0231 (9)0.0216 (9)0.0373 (11)−0.0057 (7)0.0032 (8)−0.0038 (8)
C110.0220 (9)0.0368 (11)0.0244 (10)−0.0030 (8)−0.0026 (7)−0.0046 (8)
C120.0186 (8)0.0210 (9)0.0213 (9)−0.0056 (7)−0.0002 (6)−0.0032 (7)
C130.0208 (9)0.0229 (9)0.0230 (9)−0.0021 (7)−0.0011 (7)−0.0013 (7)
C140.0270 (10)0.0282 (11)0.0354 (11)0.0014 (8)0.0035 (8)0.0004 (8)
C150.0240 (10)0.0369 (11)0.0315 (10)−0.0111 (8)−0.0004 (8)−0.0041 (9)
C160.0230 (9)0.0202 (9)0.0214 (9)−0.0075 (7)−0.0008 (7)−0.0018 (7)
C170.0216 (9)0.0297 (10)0.0242 (9)−0.0085 (8)0.0005 (7)0.0006 (8)
C180.0262 (10)0.0349 (11)0.0264 (10)−0.0093 (8)0.0039 (7)0.0030 (8)
C190.0301 (10)0.0345 (11)0.0223 (9)−0.0077 (8)0.0025 (7)−0.0009 (8)
C200.0257 (9)0.0267 (10)0.0227 (9)−0.0041 (8)−0.0025 (7)−0.0005 (7)

Geometric parameters (Å, °)

F1—C101.341 (2)C7—H70.9500
F2—C101.333 (2)C8—C91.429 (2)
F3—C101.328 (2)C8—C111.506 (3)
F4—C111.346 (2)C12—C161.548 (2)
F5—C111.342 (2)C12—H121.0000
F6—C111.340 (2)C13—C151.513 (3)
O1—C121.434 (2)C13—C141.531 (3)
O1—C131.449 (2)C14—H14A0.9800
N1—C11.315 (2)C14—H14B0.9800
N1—C91.366 (2)C14—H14C0.9800
N2—C161.462 (2)C15—H15A0.9800
N2—C201.465 (2)C15—H15B0.9800
N2—C131.470 (2)C15—H15C0.9800
C1—C21.406 (2)C16—C171.518 (2)
C1—C101.513 (2)C16—H161.0000
C2—C31.372 (2)C17—C181.534 (3)
C2—H20.9500C17—H17A0.9900
C3—C41.429 (2)C17—H17B0.9900
C3—C121.514 (2)C18—C191.527 (3)
C4—C91.419 (2)C18—H18A0.9900
C4—C51.424 (2)C18—H18B0.9900
C5—C61.367 (3)C19—C201.516 (3)
C5—H50.9500C19—H19A0.9900
C6—C71.407 (3)C19—H19B0.9900
C6—H60.9500C20—H20A0.9900
C7—C81.368 (3)C20—H20B0.9900
C12—O1—C13110.26 (13)C16—C12—H12109.4
C1—N1—C9116.60 (15)O1—C13—N2101.73 (13)
C16—N2—C20111.29 (14)O1—C13—C15107.83 (15)
C16—N2—C13105.69 (13)N2—C13—C15110.94 (14)
C20—N2—C13117.78 (14)O1—C13—C14109.00 (14)
N1—C1—C2125.68 (16)N2—C13—C14115.09 (15)
N1—C1—C10114.78 (16)C15—C13—C14111.56 (15)
C2—C1—C10119.54 (15)C13—C14—H14A109.5
C3—C2—C1118.53 (16)C13—C14—H14B109.5
C3—C2—H2120.7H14A—C14—H14B109.5
C1—C2—H2120.7C13—C14—H14C109.5
C2—C3—C4118.39 (16)H14A—C14—H14C109.5
C2—C3—C12120.45 (15)H14B—C14—H14C109.5
C4—C3—C12121.08 (15)C13—C15—H15A109.5
C9—C4—C5118.85 (15)C13—C15—H15B109.5
C9—C4—C3117.96 (15)H15A—C15—H15B109.5
C5—C4—C3123.19 (16)C13—C15—H15C109.5
C6—C5—C4120.61 (17)H15A—C15—H15C109.5
C6—C5—H5119.7H15B—C15—H15C109.5
C4—C5—H5119.7N2—C16—C17109.60 (14)
C5—C6—C7120.52 (17)N2—C16—C12100.79 (13)
C5—C6—H6119.7C17—C16—C12119.71 (15)
C7—C6—H6119.7N2—C16—H16108.7
C8—C7—C6120.74 (16)C17—C16—H16108.7
C8—C7—H7119.6C12—C16—H16108.7
C6—C7—H7119.6C16—C17—C18109.14 (15)
C7—C8—C9120.17 (17)C16—C17—H17A109.9
C7—C8—C11120.07 (16)C18—C17—H17A109.9
C9—C8—C11119.74 (16)C16—C17—H17B109.9
N1—C9—C4122.79 (15)C18—C17—H17B109.9
N1—C9—C8118.15 (16)H17A—C17—H17B108.3
C4—C9—C8119.06 (16)C19—C18—C17111.21 (15)
F3—C10—F2106.77 (16)C19—C18—H18A109.4
F3—C10—F1106.58 (16)C17—C18—H18A109.4
F2—C10—F1106.43 (15)C19—C18—H18B109.4
F3—C10—C1112.06 (16)C17—C18—H18B109.4
F2—C10—C1112.82 (15)H18A—C18—H18B108.0
F1—C10—C1111.76 (16)C20—C19—C18111.32 (15)
F6—C11—F5106.96 (16)C20—C19—H19A109.4
F6—C11—F4106.30 (15)C18—C19—H19A109.4
F5—C11—F4106.15 (14)C20—C19—H19B109.4
F6—C11—C8113.30 (14)C18—C19—H19B109.4
F5—C11—C8112.29 (15)H19A—C19—H19B108.0
F4—C11—C8111.37 (16)N2—C20—C19108.88 (15)
O1—C12—C3109.96 (14)N2—C20—H20A109.9
O1—C12—C16104.86 (13)C19—C20—H20A109.9
C3—C12—C16113.55 (14)N2—C20—H20B109.9
O1—C12—H12109.4C19—C20—H20B109.9
C3—C12—H12109.4H20A—C20—H20B108.3
C9—N1—C1—C21.2 (3)C7—C8—C11—F5−115.48 (18)
C9—N1—C1—C10−178.76 (14)C9—C8—C11—F562.7 (2)
N1—C1—C2—C3−0.7 (3)C7—C8—C11—F43.4 (2)
C10—C1—C2—C3179.25 (16)C9—C8—C11—F4−178.36 (15)
C1—C2—C3—C4−1.2 (2)C13—O1—C12—C3−122.74 (14)
C1—C2—C3—C12175.52 (14)C13—O1—C12—C16−0.32 (17)
C2—C3—C4—C92.4 (2)C2—C3—C12—O124.3 (2)
C12—C3—C4—C9−174.25 (14)C4—C3—C12—O1−159.06 (14)
C2—C3—C4—C5−177.91 (15)C2—C3—C12—C16−92.80 (19)
C12—C3—C4—C55.4 (2)C4—C3—C12—C1683.81 (18)
C9—C4—C5—C61.7 (2)C12—O1—C13—N223.98 (16)
C3—C4—C5—C6−177.97 (16)C12—O1—C13—C15140.73 (14)
C4—C5—C6—C70.4 (3)C12—O1—C13—C14−98.00 (16)
C5—C6—C7—C8−1.8 (3)C16—N2—C13—O1−39.80 (16)
C6—C7—C8—C91.1 (3)C20—N2—C13—O1−164.85 (14)
C6—C7—C8—C11179.30 (16)C16—N2—C13—C15−154.28 (15)
C1—N1—C9—C40.2 (2)C20—N2—C13—C1580.67 (19)
C1—N1—C9—C8−179.11 (15)C16—N2—C13—C1477.87 (18)
C5—C4—C9—N1178.31 (15)C20—N2—C13—C14−47.2 (2)
C3—C4—C9—N1−2.0 (2)C20—N2—C16—C17−64.79 (18)
C5—C4—C9—C8−2.4 (2)C13—N2—C16—C17166.23 (14)
C3—C4—C9—C8177.30 (14)C20—N2—C16—C12168.10 (13)
C7—C8—C9—N1−179.65 (15)C13—N2—C16—C1239.12 (16)
C11—C8—C9—N12.1 (2)O1—C12—C16—N2−23.53 (16)
C7—C8—C9—C41.0 (2)C3—C12—C16—N296.54 (15)
C11—C8—C9—C4−177.20 (14)O1—C12—C16—C17−143.66 (15)
N1—C1—C10—F381.59 (19)C3—C12—C16—C17−23.6 (2)
C2—C1—C10—F3−98.4 (2)N2—C16—C17—C1858.38 (19)
N1—C1—C10—F2−39.0 (2)C12—C16—C17—C18173.97 (15)
C2—C1—C10—F2141.05 (17)C16—C17—C18—C19−52.9 (2)
N1—C1—C10—F1−158.85 (15)C17—C18—C19—C2052.4 (2)
C2—C1—C10—F121.2 (2)C16—N2—C20—C1962.59 (18)
C7—C8—C11—F6123.21 (18)C13—N2—C20—C19−175.18 (15)
C9—C8—C11—F6−58.6 (2)C18—C19—C20—N2−55.9 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15c···Cgi0.982.873.781 (2)155

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2202).

References

  • Andes, D., van Ogtrop, M. L., Peng, J. & Criag, W. A. (2002). Antimicrob. Agents Chemother.46, 3484–3489. [PMC free article] [PubMed]
  • Bergmann, E. D., Gil-Av, E. & Pinchas, S. (1953). J. Am. Chem. Soc 78, 358–361.
  • Biot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Dive, D. & Brocard, J. S. (2000). Eur. J. Med. Chem 35, 707–714. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Croft, A. M. & Herxheimer, A. (2002). BMC Public Health. 2:6. Published online 2002 March 25. doi:10.1186/1471-2458-2-6. [PMC free article] [PubMed]
  • Delgado, A., Mauleon, D., Rosell, G., Salas, M. L. & Najar, J. (1987). Ann. Quim 83, 90–95.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kukharev, B. F., Stankevich, V. K., Klimenko, G. R. & Kukhareva, V. A. (2007). Russ. J. Org. Chem 43, 966–969.
  • Kumar, V., Mudgal, M. M., Rani, N., Jha, A., Jaggi, M., Singh, A. T., Sanna, V. K., Singh, P., Sharma, P. K., Irchhaiya, R. & Burman, A. C. (2009). J. Enzyme Inhib. Med. Chem 24, 763–770. [PubMed]
  • Kunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624–1630.
  • Lima, P. C., Avery, M. A., Tekwani, B. L., Alves, H. De M., Barreiro, E. J. & Fraga, C. A. M. (2002). Farmaco, 57, 825–832. [PubMed]
  • Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis 42, 1067–1072. [PubMed]
  • Moloney, G. P., Craik, D. J., Iskander, M. N. & Nero, T. L. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 199–206.
  • Oh, H. S., Hahn, H.-G., Cheon, S. H. & Ha, D.-C. (2000). Tetrahedron Lett 41, 5069–5072.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Page, P. C. B., Buckley, B. R., Elsegood, M. R. J., Hayman, C. M., Heaney, H., Rassias, G. A., Talib, S. A. & Liddle, J. (2007). Tetrahedron, 63, 10991–10999.
  • Roesner, M., Brossi, A. & Silverton, J. V. (1981). Heterocycles, 15, 925–933.
  • Saba, S., Ciaccio, J. A., Espinal, J. & Aman, C. E. (2007). J. Chem. Educ.84, 1011–1013.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography