PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o689–o690.
Published online 2010 February 27. doi:  10.1107/S1600536810006495
PMCID: PMC2983627

2-Amino-5-bromo­pyridinium hydrogen succinate

Abstract

In the title compound, C5H6BrN2 +·C4H5O4 , the pyridine N atom of the 2-amino-5-bromo­pyridine mol­ecule is protonated. The protonated N atom and the amino group are linked via N—H(...)O hydrogen bonds to the carboxyl­ate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H(...)O hydrogen bonds. A weak inter­molecular C—H(...)O hydrogen bond is also observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Goubitz et al. (2001 [triangle]); Vaday & Foxman (1999 [triangle]). For applications of succinic acid, see: Sauer et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o689-scheme1.jpg

Experimental

Crystal data

  • C5H6N2Br+·C4H5O4
  • M r = 291.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o689-efi1.jpg
  • a = 5.3275 (2) Å
  • b = 13.6226 (5) Å
  • c = 15.1687 (5) Å
  • V = 1100.86 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.74 mm−1
  • T = 296 K
  • 0.80 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.155, T max = 0.650
  • 10042 measured reflections
  • 2472 independent reflections
  • 2138 reflections with I > 2s(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.057
  • S = 0.99
  • 2472 reflections
  • 150 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 995 Friedel pairs
  • Flack parameter: 0.013 (8)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006495/is2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006495/is2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In this paper, we present the X-ray single-crystal structure of 2-amino-5-bromopyridinium hydrogen succinate (I).

The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallization experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [122.9 (2)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). The hydrogen succinate anions self-assemble via O4—H4···O2 (Table 1) hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H···O hydrogen bonds, forming a 3D-network.

Experimental

A hot methanol solution (10 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (59 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appeared from the mother liquor after a few days.

Refinement

Atom H1N1 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). 995 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.

Crystal data

C5H6N2Br+·C4H5O4F(000) = 584
Mr = 291.11Dx = 1.756 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4688 reflections
a = 5.3275 (2) Åθ = 3.0–26.7°
b = 13.6226 (5) ŵ = 3.74 mm1
c = 15.1687 (5) ÅT = 296 K
V = 1100.86 (7) Å3Needle, yellow
Z = 40.80 × 0.15 × 0.13 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2472 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2s(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.155, Tmax = 0.650k = −17→16
10042 measured reflectionsl = −19→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057w = 1/[σ2(Fo2) + (0.0248P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
2472 reflectionsΔρmax = 0.21 e Å3
150 parametersΔρmin = −0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 995 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.013 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0791 (3)0.66915 (12)0.38303 (10)0.0490 (4)
O20.2588 (3)0.53970 (10)0.32236 (11)0.0441 (4)
O30.0528 (4)0.80559 (14)0.20813 (14)0.0633 (6)
O4−0.3210 (4)0.86482 (12)0.24424 (12)0.0561 (5)
H4−0.25720.91690.22900.084*
C60.0954 (4)0.60694 (15)0.32351 (14)0.0341 (5)
C7−0.0907 (5)0.61018 (17)0.24855 (15)0.0450 (6)
H7A−0.18500.54930.24850.054*
H7B0.00170.61340.19350.054*
C8−0.2747 (5)0.69486 (17)0.25115 (16)0.0437 (6)
H8A−0.40680.68260.20850.052*
H8B−0.35150.69710.30910.052*
C9−0.1593 (5)0.79274 (16)0.23193 (13)0.0377 (5)
Br11.17196 (5)0.336238 (18)0.513704 (18)0.05230 (10)
N10.6002 (4)0.52635 (13)0.45518 (13)0.0345 (4)
N20.4388 (4)0.66737 (14)0.51595 (13)0.0459 (5)
H2A0.33000.66900.47410.055*
H2B0.43880.71230.55580.055*
C10.7639 (4)0.45042 (15)0.45213 (15)0.0377 (5)
H10.75470.40470.40670.045*
C20.9404 (4)0.44144 (16)0.51537 (15)0.0380 (5)
C30.9540 (5)0.51139 (18)0.58345 (16)0.0414 (6)
H31.07560.50560.62710.050*
C40.7899 (5)0.58693 (16)0.58521 (14)0.0405 (5)
H4A0.79840.63320.63020.049*
C50.6060 (4)0.59588 (15)0.51909 (14)0.0343 (5)
H1N10.482 (5)0.5320 (17)0.4180 (16)0.047 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0616 (11)0.0425 (9)0.0428 (8)0.0111 (9)−0.0104 (8)−0.0157 (8)
O20.0495 (10)0.0309 (8)0.0520 (9)0.0067 (7)−0.0090 (8)−0.0090 (7)
O30.0470 (12)0.0576 (12)0.0852 (14)−0.0024 (9)0.0118 (11)0.0229 (10)
O40.0603 (11)0.0347 (9)0.0733 (12)0.0024 (10)0.0199 (11)0.0111 (8)
C60.0412 (13)0.0265 (10)0.0347 (11)−0.0057 (9)0.0013 (9)−0.0001 (9)
C70.0572 (17)0.0345 (12)0.0432 (13)−0.0017 (11)−0.0075 (12)−0.0049 (10)
C80.0426 (15)0.0392 (12)0.0493 (13)−0.0033 (10)−0.0088 (11)0.0050 (10)
C90.0418 (13)0.0385 (12)0.0330 (10)−0.0026 (12)−0.0029 (12)0.0039 (9)
Br10.04413 (14)0.04024 (13)0.07255 (17)0.00556 (11)−0.00191 (13)0.00411 (12)
N10.0360 (11)0.0308 (10)0.0367 (10)−0.0035 (8)−0.0032 (9)−0.0029 (8)
N20.0480 (11)0.0377 (10)0.0520 (10)0.0049 (9)−0.0099 (10)−0.0151 (10)
C10.0415 (13)0.0291 (11)0.0426 (11)−0.0051 (10)0.0030 (10)−0.0034 (9)
C20.0364 (12)0.0334 (11)0.0442 (11)−0.0016 (9)0.0024 (11)0.0036 (10)
C30.0397 (13)0.0436 (13)0.0410 (12)−0.0064 (12)−0.0046 (11)0.0035 (11)
C40.0443 (14)0.0411 (12)0.0362 (11)−0.0048 (12)−0.0015 (11)−0.0057 (10)
C50.0355 (11)0.0303 (10)0.0370 (10)−0.0069 (9)0.0046 (10)−0.0002 (9)

Geometric parameters (Å, °)

O1—C61.241 (2)N1—C11.354 (3)
O2—C61.264 (3)N1—C51.356 (3)
O3—C91.199 (3)N1—H1N10.85 (3)
O4—C91.319 (3)N2—C51.321 (3)
O4—H40.8200N2—H2A0.8600
C6—C71.509 (3)N2—H2B0.8600
C7—C81.514 (3)C1—C21.349 (3)
C7—H7A0.9700C1—H10.9300
C7—H7B0.9700C2—C31.407 (3)
C8—C91.497 (3)C3—C41.351 (3)
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700C4—C51.407 (3)
Br1—C21.891 (2)C4—H4A0.9300
C9—O4—H4109.5C1—N1—H1N1121.6 (17)
O1—C6—O2123.6 (2)C5—N1—H1N1115.4 (17)
O1—C6—C7118.8 (2)C5—N2—H2A120.0
O2—C6—C7117.60 (18)C5—N2—H2B120.0
C6—C7—C8115.32 (18)H2A—N2—H2B120.0
C6—C7—H7A108.4C2—C1—N1119.6 (2)
C8—C7—H7A108.4C2—C1—H1120.2
C6—C7—H7B108.4N1—C1—H1120.2
C8—C7—H7B108.4C1—C2—C3119.8 (2)
H7A—C7—H7B107.5C1—C2—Br1120.93 (17)
C9—C8—C7114.1 (2)C3—C2—Br1119.31 (18)
C9—C8—H8A108.7C4—C3—C2119.8 (2)
C7—C8—H8A108.7C4—C3—H3120.1
C9—C8—H8B108.7C2—C3—H3120.1
C7—C8—H8B108.7C3—C4—C5120.2 (2)
H8A—C8—H8B107.6C3—C4—H4A119.9
O3—C9—O4123.3 (2)C5—C4—H4A119.9
O3—C9—C8125.1 (2)N2—C5—N1118.3 (2)
O4—C9—C8111.5 (2)N2—C5—C4123.99 (19)
C1—N1—C5122.9 (2)N1—C5—C4117.7 (2)
O1—C6—C7—C83.3 (3)C1—C2—C3—C40.2 (3)
O2—C6—C7—C8−177.4 (2)Br1—C2—C3—C4179.88 (18)
C6—C7—C8—C970.8 (3)C2—C3—C4—C5−0.1 (3)
C7—C8—C9—O36.8 (3)C1—N1—C5—N2179.6 (2)
C7—C8—C9—O4−173.26 (18)C1—N1—C5—C4−0.7 (3)
C5—N1—C1—C20.8 (3)C3—C4—C5—N2−180.0 (2)
N1—C1—C2—C3−0.5 (3)C3—C4—C5—N10.4 (3)
N1—C1—C2—Br1179.82 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.85 (3)1.88 (3)2.720 (3)171 (3)
N2—H2A···O10.861.922.782 (3)178
N2—H2B···O1i0.862.012.805 (3)154
O4—H4···O2ii0.821.852.609 (2)154
C1—H1···O3iii0.932.433.280 (3)152

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2526).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr.216, 176–181.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  • Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol.26, 100–108. [PubMed]
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective New York: Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vaday, S. & Foxman, M. B. (1999). Cryst. Eng.2, 145–151.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography