PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m247.
Published online 2010 February 3. doi:  10.1107/S1600536810003478
PMCID: PMC2983626

Bis(1,10-phenanthroline-κ2 N,N′)(sulfato-κ2 O,O′)cobalt(II) propane-1,3-diol solvate

Abstract

The title compound, [Co(SO4)(C12H8N2)2]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen) and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octa­hedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8)°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent mol­ecule. Inter­molecular O—H(...)O hydrogen bonds help to stabilize the structure.

Related literature

For related cobalt compounds with monodentate, bidentate-bridging sulfate ligands, see: Hennig et al. (1975 [triangle]); Li & Zhou (1987 [triangle]); Song et al. (2008 [triangle]); Zheng & Lin (2003 [triangle]). For related complexes with bidentate-chelating ligands, see: Lu et al. (2006 [triangle]); Paul et al. (2002 [triangle]); Wang et al. (2009 [triangle]). For an isostructural structure, see: Zhong et al. (2006 [triangle]). For a related structure, see: Chen et al. (2005 [triangle]). For applications of transition metal complexes of phen, see: Li et al. (2004 [triangle]); Wang et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m247-scheme1.jpg

Experimental

Crystal data

  • [Co(SO4)(C12H8N2)2]·C3H8O2
  • M r = 591.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m247-efi2.jpg
  • a = 18.285 (4) Å
  • b = 12.422 (3) Å
  • c = 13.211 (3) Å
  • β = 121.82 (3)°
  • V = 2549.7 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 223 K
  • 0.60 × 0.40 × 0.34 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB: Jacobson, 1998 [triangle]) T min = 0.823, T max = 1.000
  • 7099 measured reflections
  • 2898 independent reflections
  • 2540 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.101
  • S = 1.06
  • 2898 reflections
  • 183 parameters
  • 21 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003478/zq2024sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003478/zq2024Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

supplementary crystallographic information

Comment

Metal-organic complexes have been widely applied in fields of research and production because of their capability of showing novel optical, electronical, magnetical properties. M-phen transition metal complexes (phen = phenantroline) possess important actions in the areas of extraction, plating, bio-inorganic chemistry, analytical chemistry and functional materials (Wang et al., 2000; Li et al., 2004).

Although many transtion metal complexes with sulfate ions as monodentate, bidentate and bidentate-bridging ligands have been structurally characterized (Hennig et al., 1975; Zheng & Lin, 2003; Song et al., 2008), as far as we know, the reports on complexes with bidentate-chelating sulfate ligands are few (Paul et al., 2002; Lu et al., 2006; Wang et al., 2009). Here, we report the crystal structure of the new complex [CoSO4(C12H8N2)2].C3H8O2 unexpectedly obtained during an attempt to synthesize a mixed-ligand complex of cobalt with phen and melamine via a solvothermal reaction, which is analogue with a previously reported CoII complex (Zhong et al., 2006).

In the crystal structure of the title complex, the CoII metal ion is six-coordinated in a distorted octahedral environement by four N atoms from two chelating phen ligands and two O atoms from a bidentate-chelating sulfate ligand (Fig. 1). The Co—O bond distance [2.1323 (15) Å], the O—Co—O bite angle [66.54 (8)°], the Co—N bond distances [2.1295 (16)–2.1341 (17) Å] and the N—Co—N bite angle [77.99 (6)°] are very similar to those seen in the previously reported cobalt complex [CoSO4(C12H8N2)2].C2H6O2 (II)[Zhong et al., 2006]. The dihedral angle between the two chelating N2C2 groups is 80.06 (8)°, this is larger than that found in (II) [70.16 (6)°]. A twofold rotation axis (symmetry code: -x + 1, y, - z + 1/2) passes through the Co and S atoms, and also through the mid-carbon of the propane-1,3-diol solvent molecule. The crystal structure is further stabilized by intermolecular O3—H3B···O2 hydrogen bonds (Fig. 1 and Table 1).

Experimental

Red prism-shaped crystals of the title compound was unexpectedly obtained as a by-product during an attempt to synthesize a mixed-ligand cobalt complex with phen and melamine via a propane-1,3-diol/water solvothermal reaction. 0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol CoSO4.7H2O, 2.0 ml 1,3-propanediol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h, whereupon red-prisms of the title complex were obtained.

Refinement

The non-H atoms were refined anisotropically. The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of central C atom of propane-1,3-diol were constrained, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), whereas other H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related ...

Crystal data

[Co(SO4)(C12H8N2)2]·C3H8O2F(000) = 1220
Mr = 591.49Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3592 reflections
a = 18.285 (4) Åθ = 3.2–27.5°
b = 12.422 (3) ŵ = 0.81 mm1
c = 13.211 (3) ÅT = 223 K
β = 121.82 (3)°Prism, red
V = 2549.7 (13) Å30.60 × 0.40 × 0.34 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer2898 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −23→23
Absorption correction: multi-scan (REQAB: Jacobson, 1998)k = −16→13
Tmin = 0.823, Tmax = 1.000l = −17→14
7099 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0504P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.72 e Å3
183 parametersΔρmin = −0.45 e Å3
21 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.81835 (3)0.25000.02201 (14)
S10.50001.03618 (5)0.25000.02331 (17)
O10.44793 (9)0.96187 (12)0.14805 (12)0.0329 (3)
C110.34382 (12)0.68292 (14)0.14757 (16)0.0224 (4)
N20.40420 (10)0.71189 (13)0.12195 (14)0.0238 (3)
C100.39507 (13)0.67410 (16)0.02169 (18)0.0284 (4)
H10A0.43560.69350.00280.034*
C80.26687 (13)0.57717 (16)−0.03144 (17)0.0304 (4)
H8A0.22130.5328−0.08320.036*
O20.55612 (10)1.10269 (14)0.22920 (16)0.0446 (4)
C60.21399 (13)0.58852 (17)0.10868 (18)0.0310 (4)
H6A0.16790.54340.06040.037*
C120.35267 (11)0.72718 (15)0.25388 (16)0.0223 (4)
C70.27424 (12)0.61511 (16)0.07446 (17)0.0264 (4)
C40.29234 (12)0.69936 (16)0.28497 (17)0.0270 (4)
C90.32726 (14)0.60646 (18)−0.05671 (18)0.0331 (4)
H9A0.32350.5817−0.12570.040*
C50.22322 (12)0.62810 (18)0.21042 (18)0.0322 (5)
H5A0.18410.60860.23190.039*
N10.41806 (10)0.79727 (13)0.31789 (14)0.0250 (3)
C10.42581 (13)0.84107 (17)0.41526 (18)0.0291 (4)
H1A0.47060.88920.45970.035*
C20.36899 (14)0.81726 (18)0.45310 (19)0.0335 (5)
H2A0.37620.84910.52150.040*
C30.30319 (13)0.74709 (18)0.38888 (18)0.0335 (5)
H3A0.26530.73060.41350.040*
O30.56334 (16)1.31539 (16)0.1809 (2)0.0659 (6)
H3B0.56101.25140.19440.099*
C140.50001.4456 (3)0.25000.0562 (10)
C130.5774 (2)1.3764 (3)0.2780 (3)0.0723 (9)
H13A0.62681.42270.30330.087*
H13B0.59071.32860.34360.087*
H140.496 (3)1.442 (4)0.174 (2)0.143 (19)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0211 (2)0.0208 (2)0.0239 (2)0.0000.01172 (16)0.000
S10.0212 (3)0.0200 (3)0.0303 (3)0.0000.0146 (3)0.000
O10.0315 (7)0.0277 (8)0.0270 (7)0.0012 (6)0.0068 (6)0.0011 (6)
C110.0222 (9)0.0193 (9)0.0227 (9)0.0027 (7)0.0098 (7)0.0026 (7)
N20.0253 (8)0.0218 (8)0.0254 (8)0.0006 (6)0.0141 (7)0.0004 (6)
C100.0334 (10)0.0272 (11)0.0284 (10)−0.0004 (8)0.0189 (9)−0.0014 (8)
C80.0306 (10)0.0278 (11)0.0241 (9)−0.0033 (8)0.0085 (8)−0.0045 (8)
O20.0435 (9)0.0362 (9)0.0676 (12)−0.0093 (8)0.0386 (9)0.0028 (8)
C60.0243 (9)0.0314 (11)0.0298 (10)−0.0075 (8)0.0092 (8)0.0014 (8)
C120.0202 (8)0.0222 (9)0.0218 (8)0.0026 (7)0.0092 (7)0.0028 (7)
C70.0251 (9)0.0245 (10)0.0247 (9)0.0007 (8)0.0098 (8)0.0020 (7)
C40.0251 (9)0.0291 (10)0.0271 (9)0.0023 (8)0.0139 (8)0.0045 (8)
C90.0397 (11)0.0332 (11)0.0252 (9)0.0002 (9)0.0162 (9)−0.0043 (8)
C50.0259 (9)0.0382 (12)0.0328 (10)−0.0041 (9)0.0157 (8)0.0046 (9)
N10.0249 (8)0.0252 (8)0.0253 (8)0.0004 (6)0.0135 (7)−0.0008 (6)
C10.0304 (10)0.0283 (11)0.0270 (9)−0.0003 (8)0.0140 (8)−0.0050 (8)
C20.0409 (12)0.0361 (12)0.0282 (10)0.0029 (9)0.0213 (10)−0.0025 (8)
C30.0347 (10)0.0419 (13)0.0318 (10)0.0004 (9)0.0229 (9)0.0030 (9)
O30.1116 (18)0.0412 (11)0.0867 (15)−0.0012 (11)0.0808 (15)0.0034 (10)
C140.085 (3)0.0301 (18)0.068 (3)0.0000.050 (2)0.000
C130.077 (2)0.072 (2)0.069 (2)−0.0252 (18)0.0392 (17)−0.0071 (17)

Geometric parameters (Å, °)

Co1—N1i2.1295 (16)C6—C71.432 (3)
Co1—N12.1295 (16)C6—H6A0.9300
Co1—O1i2.1323 (15)C12—N11.355 (3)
Co1—O12.1323 (15)C12—C41.408 (3)
Co1—N22.1341 (17)C4—C31.410 (3)
Co1—N2i2.1341 (17)C4—C51.428 (3)
Co1—S12.7058 (9)C9—H9A0.9300
S1—O21.4519 (15)C5—H5A0.9300
S1—O2i1.4519 (15)N1—C11.334 (3)
S1—O11.4901 (15)C1—C21.401 (3)
S1—O1i1.4901 (15)C1—H1A0.9300
C11—N21.363 (2)C2—C31.360 (3)
C11—C71.402 (3)C2—H2A0.9300
C11—C121.436 (3)C3—H3A0.9300
N2—C101.330 (2)O3—C131.392 (3)
C10—C91.401 (3)O3—H3B0.8200
C10—H10A0.9300C14—C13i1.525 (4)
C8—C91.361 (3)C14—C131.525 (4)
C8—C71.414 (3)C14—H140.97 (3)
C8—H8A0.9300C13—H13A0.9700
C6—C51.356 (3)C13—H13B0.9700
N1i—Co1—N1165.87 (9)C9—C8—H8A120.4
N1i—Co1—O1i100.94 (6)C7—C8—H8A120.4
N1—Co1—O1i90.91 (6)C5—C6—C7120.98 (18)
N1i—Co1—O190.91 (6)C5—C6—H6A119.5
N1—Co1—O1100.94 (6)C7—C6—H6A119.5
O1i—Co1—O166.54 (8)N1—C12—C4123.01 (17)
N1i—Co1—N293.19 (6)N1—C12—C11117.63 (16)
N1—Co1—N277.99 (6)C4—C12—C11119.33 (17)
O1i—Co1—N2157.72 (6)C11—C7—C8117.41 (18)
O1—Co1—N296.36 (6)C11—C7—C6119.39 (18)
N1i—Co1—N2i77.99 (6)C8—C7—C6123.19 (18)
N1—Co1—N2i93.19 (6)C12—C4—C3116.81 (18)
O1i—Co1—N2i96.36 (6)C12—C4—C5119.71 (18)
O1—Co1—N2i157.72 (6)C3—C4—C5123.45 (18)
N2—Co1—N2i103.42 (9)C8—C9—C10119.69 (19)
N1i—Co1—S197.06 (5)C8—C9—H9A120.2
N1—Co1—S197.06 (5)C10—C9—H9A120.2
O1i—Co1—S133.27 (4)C6—C5—C4120.73 (18)
O1—Co1—S133.27 (4)C6—C5—H5A119.6
N2—Co1—S1128.29 (5)C4—C5—H5A119.6
N2i—Co1—S1128.29 (5)C1—N1—C12118.30 (16)
O2—S1—O2i110.64 (15)C1—N1—Co1127.99 (14)
O2—S1—O1111.10 (9)C12—N1—Co1113.67 (12)
O2i—S1—O1110.18 (9)N1—C1—C2122.42 (19)
O2—S1—O1i110.18 (9)N1—C1—H1A118.8
O2i—S1—O1i111.10 (9)C2—C1—H1A118.8
O1—S1—O1i103.45 (12)C3—C2—C1119.41 (19)
O2—S1—Co1124.68 (7)C3—C2—H2A120.3
O2i—S1—Co1124.68 (7)C1—C2—H2A120.3
O1—S1—Co151.72 (6)C2—C3—C4120.05 (18)
O1i—S1—Co151.72 (6)C2—C3—H3A120.0
S1—O1—Co195.01 (7)C4—C3—H3A120.0
N2—C11—C7123.19 (17)C13—O3—H3B109.5
N2—C11—C12116.97 (16)C13i—C14—C13111.4 (3)
C7—C11—C12119.82 (17)C13i—C14—H14100 (3)
C10—N2—C11117.47 (17)C13—C14—H1477 (3)
C10—N2—Co1128.88 (13)O3—C13—C14112.8 (2)
C11—N2—Co1113.62 (12)O3—C13—H13A109.0
N2—C10—C9123.06 (18)C14—C13—H13A109.0
N2—C10—H10A118.5O3—C13—H13B109.0
C9—C10—H10A118.5C14—C13—H13B109.0
C9—C8—C7119.17 (19)H13A—C13—H13B107.8
N1i—Co1—S1—O2−9.86 (10)C11—N2—C10—C9−0.4 (3)
N1—Co1—S1—O2170.14 (10)Co1—N2—C10—C9−178.16 (15)
O1i—Co1—S1—O289.33 (12)N2—C11—C12—N12.5 (3)
O1—Co1—S1—O2−90.67 (12)C7—C11—C12—N1−176.19 (17)
N2—Co1—S1—O2−109.61 (10)N2—C11—C12—C4−179.60 (17)
N2i—Co1—S1—O270.39 (10)C7—C11—C12—C41.7 (3)
N1i—Co1—S1—O2i170.14 (10)N2—C11—C7—C8−1.0 (3)
N1—Co1—S1—O2i−9.86 (10)C12—C11—C7—C8177.62 (17)
O1i—Co1—S1—O2i−90.67 (12)N2—C11—C7—C6179.73 (18)
O1—Co1—S1—O2i89.33 (12)C12—C11—C7—C6−1.7 (3)
N2—Co1—S1—O2i70.39 (10)C9—C8—C7—C110.8 (3)
N2i—Co1—S1—O2i−109.61 (10)C9—C8—C7—C6−179.9 (2)
N1i—Co1—S1—O180.81 (9)C5—C6—C7—C110.1 (3)
N1—Co1—S1—O1−99.19 (9)C5—C6—C7—C8−179.1 (2)
O1i—Co1—S1—O1180.0N1—C12—C4—C3−0.9 (3)
N2—Co1—S1—O1−18.94 (9)C11—C12—C4—C3−178.66 (17)
N2i—Co1—S1—O1161.06 (9)N1—C12—C4—C5177.55 (18)
N1i—Co1—S1—O1i−99.19 (9)C11—C12—C4—C5−0.2 (3)
N1—Co1—S1—O1i80.81 (9)C7—C8—C9—C10−0.5 (3)
O1—Co1—S1—O1i180.0N2—C10—C9—C80.3 (3)
N2—Co1—S1—O1i161.06 (9)C7—C6—C5—C41.4 (3)
N2i—Co1—S1—O1i−18.94 (9)C12—C4—C5—C6−1.3 (3)
O2—S1—O1—Co1118.19 (9)C3—C4—C5—C6177.0 (2)
O2i—S1—O1—Co1−118.83 (9)C4—C12—N1—C10.6 (3)
O1i—S1—O1—Co10.0C11—C12—N1—C1178.38 (17)
N1i—Co1—O1—S1−101.54 (8)C4—C12—N1—Co1178.28 (14)
N1—Co1—O1—S186.20 (8)C11—C12—N1—Co1−3.9 (2)
O1i—Co1—O1—S10.0N1i—Co1—N1—C1128.19 (17)
N2—Co1—O1—S1165.15 (7)O1i—Co1—N1—C1−19.01 (17)
N2i—Co1—O1—S1−42.22 (19)O1—Co1—N1—C1−85.28 (18)
C7—C11—N2—C100.7 (3)N2—Co1—N1—C1−179.54 (18)
C12—C11—N2—C10−177.90 (17)N2i—Co1—N1—C177.41 (18)
C7—C11—N2—Co1178.87 (14)S1—Co1—N1—C1−51.81 (17)
C12—C11—N2—Co10.2 (2)N1i—Co1—N1—C12−49.27 (13)
N1i—Co1—N2—C10−14.97 (17)O1i—Co1—N1—C12163.52 (13)
N1—Co1—N2—C10176.18 (18)O1—Co1—N1—C1297.25 (14)
O1i—Co1—N2—C10114.64 (19)N2—Co1—N1—C122.99 (13)
O1—Co1—N2—C1076.30 (17)N2i—Co1—N1—C12−100.06 (14)
N2i—Co1—N2—C10−93.38 (17)S1—Co1—N1—C12130.73 (13)
S1—Co1—N2—C1086.62 (17)C12—N1—C1—C2−0.1 (3)
N1i—Co1—N2—C11167.15 (13)Co1—N1—C1—C2−177.43 (15)
N1—Co1—N2—C11−1.71 (12)N1—C1—C2—C3−0.1 (3)
O1i—Co1—N2—C11−63.2 (2)C1—C2—C3—C4−0.3 (3)
O1—Co1—N2—C11−101.58 (13)C12—C4—C3—C20.7 (3)
N2i—Co1—N2—C1188.74 (13)C5—C4—C3—C2−177.6 (2)
S1—Co1—N2—C11−91.26 (13)C13i—C14—C13—O364.6 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.922.737 (3)179

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2024).

References

  • Chen, J.-M., Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1724–m1726.
  • Hennig, H., Benedix, R., Hempel, K. & Reinhold, J. (1975). Z. Anorg. Allg. Chem.412, 141–147.
  • Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Li, F., Ma, Y.-G., Liu, S.-Y. & Shen, J.-C. (2004). Appl. Phys. Lett.84, 148–150.
  • Li, J. M. & Zhou, K. J. (1987). Jiegou Huaxue, 6, 198–200.
  • Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.
  • Paul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859–3867.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, A.-R., Hwang, I.-C. & Ha, K. (2008). Acta Cryst. E64, m44. [PMC free article] [PubMed]
  • Wang, Y.-R., Hu, Y.-S., Shi, C.-L., Li, D.-P. & Li, Y.-F. (2009). Acta Cryst. E65, m789–m790. [PMC free article] [PubMed]
  • Wang, Z.-M., Zhou, Z.-F. & Lin, H.-K. (2000). Chin. J. Inorg. Chem.16, 267–272.
  • Zheng, Y. Q. & Lin, J. L. (2003). Z. Anorg. Allg. Chem.629, 185–187.
  • Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography