PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o509.
Published online 2010 February 3. doi:  10.1107/S160053681000334X
PMCID: PMC2983625

(1-Naphthyl­meth­yl)ammonium chloride

Abstract

The reaction of 1-naphthyl­methyl­amine and hydro­chloric acid in a 1:1 molar ratio resulted in the formation of the 1:1 proton-transfer compound, C11H12N+·Cl. In the crystal, the ions are linked by N—H(...)Cl hydrogen bonds into a sheet pattern in the ab plane such that each Cl ion is bonded to three NH groups from the naphthylmethylammonium ion.

Related literature

For 1-naphthyl­methyl­ammonium salts, see: Sada et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o509-scheme1.jpg

Experimental

Crystal data

  • C11H12N+·Cl
  • M r = 193.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o509-efi1.jpg
  • a = 5.3395 (7) Å
  • b = 9.3355 (15) Å
  • c = 10.1432 (13) Å
  • β = 100.864 (10)°
  • V = 496.55 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 K
  • 0.35 × 0.13 × 0.11 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005 [triangle]) T min = 0.952, T max = 0.968
  • 5801 measured reflections
  • 2677 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.100
  • S = 1.19
  • 2677 reflections
  • 130 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 245 Friedel pairs
  • Flack parameter: 0.09 (10)

Data collection: X-AREA; cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000334X/om2314sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000334X/om2314Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge Shahid Beheshti University, GC, for financial support.

supplementary crystallographic information

Comment

1-naphthylmethylamine has been recognized as a suitable agent in the synthesis of proton-transfer systems (Sada et al., 2004). We report here the synthesis and characterization of the title salt, 1-naphthylmethylammonium chloride. The structure shows the presence of a 1-naphthylmethylammonium species that arises from the protonation of the amine group (Fig. 1). Hydrogen bonds play a very important role in the structure. As it is clear from Figure 2, chloride atoms engage in three hydrogen bonds with the amine group in which the chloride is in the center of triangle from three H atoms from three different cations.

Experimental

A solution of 2.5 ml of 2M hydrochloric acid was added to a solution of 5 mmol 1-naphthalenemethylamine (0.73 ml) in 30 ml pyridine. The resulting solution was stirred at 373 K for 5 h and at ambient temperature for 24 h. A pale brown solution resulted. After drying the remaining brown solid was dissolved in pure methanol. X-ray quality crystals were obtained by slow evaporation at room temperature.

Refinement

All of the H atoms bonded to C were positioned geometrically with C—H = 0.93 and 0.97Å for aromatic ring and CH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). NH3 hydrogens atoms were positioned from Fourier map and freely refined.

Figures

Fig. 1.
The molecular staucture with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
A packing diagram of the title compound in thr b-direction. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H12N+·ClF(000) = 204
Mr = 193.67Dx = 1.295 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1056 reflections
a = 5.3395 (7) Åθ = 2.0–29.2°
b = 9.3355 (15) ŵ = 0.34 mm1
c = 10.1432 (13) ÅT = 298 K
β = 100.864 (10)°Prism, colorless
V = 496.55 (12) Å30.35 × 0.13 × 0.11 mm
Z = 2

Data collection

Stoe IPDS II diffractometer2098 reflections with I > 2σ(I)
rotation method scansRint = 0.065
Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005)θmax = 29.2°, θmin = 2.0°
Tmin = 0.952, Tmax = 0.968h = −7→6
5801 measured reflectionsk = −12→12
2677 independent reflectionsl = −13→13

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0155P)2 + 0.2107P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max = 0.002
wR(F2) = 0.100Δρmax = 0.28 e Å3
S = 1.19Δρmin = −0.17 e Å3
2677 reflectionsAbsolute structure: Flack (1983), 1245 Friedel pairs
130 parametersFlack parameter: 0.09 (10)
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6260 (6)0.3230 (3)0.7737 (3)0.0472 (8)
H1A0.58520.22420.74870.057*
H1B0.77930.34810.74060.057*
C20.4110 (5)0.4171 (3)0.7057 (3)0.0387 (6)
C30.2613 (6)0.4950 (3)0.7758 (3)0.0442 (7)
H30.29410.49190.86910.053*
C40.0597 (6)0.5793 (4)0.7084 (4)0.0505 (8)
H4−0.03750.63260.75770.061*
C50.0047 (6)0.5840 (3)0.5736 (3)0.0501 (8)
H5−0.13130.63960.5310.06*
C60.1509 (5)0.5057 (3)0.4954 (3)0.0409 (7)
C70.0961 (7)0.5081 (3)0.3544 (4)0.0529 (9)
H7−0.04230.5610.31040.063*
C80.2421 (8)0.4342 (4)0.2810 (4)0.0591 (9)
H80.20430.43730.18770.071*
C90.4484 (7)0.3540 (4)0.3465 (4)0.0571 (9)
H90.54810.30390.29620.069*
C100.5064 (6)0.3476 (3)0.4826 (4)0.0486 (8)
H100.64540.29330.52380.058*
C110.3593 (5)0.4221 (3)0.5631 (3)0.0395 (6)
N10.6799 (6)0.3336 (3)0.9219 (3)0.0495 (7)
H1C0.708 (8)0.418 (5)0.955 (4)0.069 (12)*
H1D0.835 (7)0.288 (3)0.957 (3)0.046 (9)*
H1E0.546 (8)0.298 (4)0.957 (4)0.065 (12)*
Cl10.79683 (14)0.66025 (10)1.01767 (8)0.04759 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0375 (17)0.0408 (16)0.062 (2)0.0020 (14)0.0058 (15)0.0015 (15)
C20.0302 (14)0.0284 (13)0.0570 (18)0.0001 (11)0.0074 (13)0.0007 (12)
C30.0404 (16)0.0394 (15)0.0531 (19)0.0020 (13)0.0096 (14)0.0017 (13)
C40.0441 (18)0.0429 (16)0.067 (2)0.0118 (14)0.0171 (16)0.0025 (16)
C50.0401 (17)0.0416 (16)0.068 (2)0.0088 (14)0.0095 (16)0.0115 (15)
C60.0335 (16)0.0328 (13)0.056 (2)−0.0042 (11)0.0083 (13)0.0032 (13)
C70.050 (2)0.0468 (18)0.060 (2)−0.0081 (15)0.0048 (16)0.0078 (16)
C80.069 (2)0.056 (2)0.053 (2)−0.0188 (19)0.0126 (18)−0.0009 (17)
C90.061 (2)0.0467 (18)0.069 (2)−0.0062 (16)0.0242 (19)−0.0125 (17)
C100.0424 (18)0.0398 (16)0.064 (2)0.0014 (13)0.0104 (16)−0.0065 (15)
C110.0308 (14)0.0318 (13)0.0561 (18)−0.0066 (11)0.0087 (13)−0.0008 (13)
N10.0387 (16)0.0421 (16)0.0640 (19)0.0032 (13)0.0002 (14)0.0029 (14)
Cl10.0426 (3)0.0466 (3)0.0527 (4)−0.0046 (4)0.0067 (3)−0.0113 (4)

Geometric parameters (Å, °)

C1—N11.480 (5)C6—C111.425 (4)
C1—C21.506 (4)C7—C81.363 (5)
C1—H1A0.97C7—H70.93
C1—H1B0.97C8—C91.393 (5)
C2—C31.374 (4)C8—H80.93
C2—C111.421 (4)C9—C101.357 (5)
C3—C41.402 (4)C9—H90.93
C3—H30.93C10—C111.418 (4)
C4—C51.344 (5)C10—H100.93
C4—H40.93N1—H1C0.86 (4)
C5—C61.416 (4)N1—H1D0.94 (3)
C5—H50.93N1—H1E0.92 (4)
C6—C71.405 (5)
N1—C1—C2114.3 (3)C8—C7—C6121.1 (3)
N1—C1—H1A108.7C8—C7—H7119.4
C2—C1—H1A108.7C6—C7—H7119.4
N1—C1—H1B108.7C7—C8—C9119.6 (3)
C2—C1—H1B108.7C7—C8—H8120.2
H1A—C1—H1B107.6C9—C8—H8120.2
C3—C2—C11119.2 (3)C10—C9—C8121.2 (3)
C3—C2—C1122.7 (3)C10—C9—H9119.4
C11—C2—C1118.1 (3)C8—C9—H9119.4
C2—C3—C4120.9 (3)C9—C10—C11121.3 (3)
C2—C3—H3119.6C9—C10—H10119.4
C4—C3—H3119.6C11—C10—H10119.4
C5—C4—C3121.0 (3)C10—C11—C2123.2 (3)
C5—C4—H4119.5C10—C11—C6117.3 (3)
C3—C4—H4119.5C2—C11—C6119.5 (3)
C4—C5—C6121.0 (3)C1—N1—H1C116 (3)
C4—C5—H5119.5C1—N1—H1D110.2 (19)
C6—C5—H5119.5H1C—N1—H1D101 (3)
C7—C6—C5122.0 (3)C1—N1—H1E111 (2)
C7—C6—C11119.5 (3)H1C—N1—H1E106 (4)
C5—C6—C11118.4 (3)H1D—N1—H1E113 (3)
N1—C1—C2—C3−6.2 (4)C8—C9—C10—C110.1 (5)
N1—C1—C2—C11175.2 (3)C9—C10—C11—C2179.2 (3)
C11—C2—C3—C4−0.1 (5)C9—C10—C11—C6−1.0 (5)
C1—C2—C3—C4−178.8 (3)C3—C2—C11—C10178.7 (3)
C2—C3—C4—C51.2 (5)C1—C2—C11—C10−2.6 (4)
C3—C4—C5—C6−0.9 (5)C3—C2—C11—C6−1.1 (4)
C4—C5—C6—C7179.5 (3)C1—C2—C11—C6177.6 (3)
C4—C5—C6—C11−0.4 (5)C7—C6—C11—C101.6 (4)
C5—C6—C7—C8178.7 (3)C5—C6—C11—C10−178.5 (3)
C11—C6—C7—C8−1.4 (4)C7—C6—C11—C2−178.5 (3)
C6—C7—C8—C90.4 (5)C5—C6—C11—C21.4 (4)
C7—C8—C9—C100.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl10.86 (5)2.37 (5)3.226 (3)172 (3)
N1—H1D···Cl1i0.94 (4)2.27 (4)3.187 (3)164 (3)
N1—H1E···Cl1ii0.92 (4)2.29 (4)3.172 (3)161 (3)

Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2314).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sada, K., Inoue, K., Tanaka, T., Tanaka, A., Epergyes, A., Nagahama, S., Matsumoto, A. & Miyala, M. (2004). J. Am. Chem. Soc.126, 1764–1771. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography