PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o705.
Published online 2010 February 27. doi:  10.1107/S1600536810006781
PMCID: PMC2983623

Bis[eth­yl(2-hydroxy­ethyl)aza­nium] 2,2′-disulfanediyldibenzoate

Abstract

The asymmetric unit of the title salt, 2C4H12NO+·C14H8O4S2 2−, contains an eth­yl(2-hydr­oxy)aminium cation and half a 2,2′-disulfanediyldibenzoate anion, with the latter disposed about a twofold axis. The cation is a straight chain with the exception of the terminal hydr­oxy group [the N—C—C—O torsion angle is 66.5 (2)°]. A twisted conformation is found for the anion [the C—S—S—C torsion angle is 91.51 (9)° and the dihedral angle between the rings is 81.01 (4)°]. A supra­molecular chain with base vector [101] and a tubular topology is formed in the crystal structure mediated by charge-assisted O—H(...)O and N+—H(...)O hydrogen bonding.

Related literature

For related studies on co-crystal/salt formation involving 2-[(2-carboxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007 [triangle]); Broker et al. (2008 [triangle]). For software used to search the Cambridge Structural Database, see: Bruno et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o705-scheme1.jpg

Experimental

Crystal data

  • 2C4H12NO+·C14H8O4S2 2−
  • M r = 484.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o705-efi1.jpg
  • a = 22.949 (5) Å
  • b = 8.2429 (16) Å
  • c = 14.766 (3) Å
  • β = 119.80 (3)°
  • V = 2423.9 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 K
  • 0.40 × 0.25 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 CCD-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.800, T max = 1.000
  • 7823 measured reflections
  • 2503 independent reflections
  • 2367 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 1.14
  • 2503 reflections
  • 148 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006781/zs2030sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006781/zs2030Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title salt, (I), was obtained during crystallisation experiments involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid with various N-containing species (Broker & Tiekink, 2007; Broker et al., 2008). The asymmetric unit comprises an aminium cation (Fig. 1) and half a dithiodibenzoate anion (Fig. 2), with the latter disposed about a crystallographic 2-fold axis. The cation is linear with the exception of the terminal hydroxy group which is twisted out of the chain as seen in the O3–C8–C9–N1 torsion angle [66.5 (2)°]. Confirmation of protonation of the amine-N1 atom during crystallisation is seen in the pattern of hydrogen-bonding interactions (see below). A search of the CSD (Bruno et al., 2002) suggests that this is the first structural characterisation reported for the ethyl(2-hydroxyethyl)aminium cation. The dithiodibenzoate anion is twisted [torsion angle C3–S1–S1i–C3i = 91.51 (9)°: for symmetry code i, -x, y, 1/2-z] in accord with expectation, with the conformation stabilised by an intramolecular S···O interaction of 2.7351 (16) Å (Broker & Tiekink (2007). The carboxylate group is twisted out of the plane of the benzene ring to which it is connected with the C3–C2–C1–O1 torsion angle being -25.0 (2) °. Confirmation of deprotonation of the carboxylic acid is consistent with the observed near equivalence of the C1–O1 and C1–O2 bond distances [1.2499 (19) and 1.270 (2) Å] with the weaker C1–O2 bond correlated to the participation of the O2 atom in two hydrogen bonding interactions compared to one for the O1 atom. The crystal packing is dominated by charge-assisted O–H···O- and N+–H···O- hydrogen bonding (Table 1). Each of the aminium-H atoms connects to a carboxylate-O atom and the O2 atom is also hydrogen-bonded to the hydroxy group. The result of these interactions is a supramolecular chain with base vector [1 0 1] (Fig. 3), which has a tubular topology (Fig. 4).

Experimental

The title salt (I) was obtained by dissolving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (0.100 g, Fluka) in ethanol (20 ml) to which was added the amine in 1:1, 1:2 and 1:3 stoichiometric ratios in three separate experiments. Regardless of the stoichiometry, only crystals of (I) were harvested as proved by multiple unit cell determinations, m.p. 429–431 K

Refinement

The H-atoms were located from difference maps but placed in their idealised positions (O–H = 0.84 Å, N–H = 0.92 Å, and C–H 0.95-0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5Ueq(carrier atom).

Figures

Fig. 1.
Molecular structure of the cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Molecular structure of the anion in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The anion has crystallographic 2-fold symmetry; i: -x, y, 1/2-z.
Fig. 3.
Supramolecular chain formation in (I) mediated by charge-assisted O–H···O- (orange dashed lines) and N+–H···O- (blue dashed lines) hydrogen bonding. Colour code: S, yellow; O, red; N, blue; ...
Fig. 4.
An end-on view of the supramolecular chain shown in Fig. 3 highlighting the tubular topology. The charge-assisted O–H···O- and N+–H···O- hydrogen-bonding interactions are indicated by orange ...

Crystal data

2C4H12NO+·C14H8O4S22F(000) = 1032
Mr = 484.64Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5747 reflections
a = 22.949 (5) Åθ = 3.6–30.5°
b = 8.2429 (16) ŵ = 0.26 mm1
c = 14.766 (3) ÅT = 173 K
β = 119.80 (3)°Block, colourless
V = 2423.9 (11) Å30.40 × 0.25 × 0.10 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 CCD-detector diffractometer2503 independent reflections
Radiation source: fine-focus sealed tube2367 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 26.5°, θmin = 3.6°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −28→25
Tmin = 0.800, Tmax = 1.000k = −10→10
7823 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0437P)2 + 1.6814P] where P = (Fo2 + 2Fc2)/3
2503 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.04587 (2)0.42885 (5)0.31713 (3)0.02621 (14)
O10.17238 (6)0.44668 (13)0.48609 (9)0.0272 (3)
O20.21265 (6)0.67861 (14)0.57133 (9)0.0269 (3)
O30.17235 (7)0.9908 (2)0.29494 (10)0.0453 (4)
H30.20720.93760.33380.068*
N10.20710 (7)1.00243 (16)0.51963 (10)0.0231 (3)
H1A0.24101.02420.50520.028*
H1B0.20690.89230.52960.028*
C10.16465 (8)0.58217 (18)0.51667 (12)0.0223 (3)
C20.09497 (8)0.63551 (18)0.48785 (12)0.0222 (3)
C30.03728 (8)0.57605 (18)0.39935 (12)0.0236 (3)
C4−0.02554 (9)0.6307 (2)0.37906 (14)0.0329 (4)
H4−0.06470.59310.31870.039*
C5−0.03181 (10)0.7382 (2)0.44505 (15)0.0376 (4)
H5−0.07520.77280.43030.045*
C60.02468 (9)0.7965 (2)0.53293 (14)0.0335 (4)
H60.02030.87010.57870.040*
C70.08727 (9)0.74627 (19)0.55301 (13)0.0269 (4)
H70.12610.78770.61240.032*
C80.12733 (9)0.9551 (2)0.33125 (14)0.0351 (4)
H8A0.12980.83760.34680.042*
H8B0.08100.97940.27530.042*
C90.14185 (9)1.0497 (2)0.42769 (13)0.0306 (4)
H9A0.14271.16700.41390.037*
H9B0.10531.03090.44370.037*
C100.22223 (9)1.0870 (2)0.61827 (14)0.0316 (4)
H10A0.18551.06710.63360.038*
H10B0.22521.20530.60990.038*
C110.28740 (10)1.0267 (3)0.70735 (15)0.0430 (5)
H11A0.29671.08320.77160.065*
H11B0.32381.04770.69240.065*
H11C0.28420.90980.71620.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0231 (2)0.0274 (2)0.0238 (2)0.00348 (15)0.00832 (17)−0.00108 (15)
O10.0244 (6)0.0241 (6)0.0319 (6)0.0018 (5)0.0131 (5)−0.0030 (5)
O20.0229 (6)0.0252 (6)0.0285 (6)−0.0020 (5)0.0097 (5)−0.0005 (5)
O30.0373 (8)0.0698 (10)0.0298 (7)0.0153 (7)0.0174 (6)0.0157 (7)
N10.0237 (7)0.0218 (7)0.0246 (7)0.0019 (5)0.0126 (6)0.0006 (5)
C10.0239 (8)0.0234 (8)0.0194 (7)0.0006 (6)0.0107 (7)0.0047 (6)
C20.0239 (8)0.0194 (7)0.0243 (8)0.0022 (6)0.0128 (7)0.0051 (6)
C30.0234 (8)0.0231 (8)0.0243 (8)0.0029 (6)0.0118 (7)0.0039 (6)
C40.0237 (9)0.0377 (10)0.0326 (9)0.0040 (8)0.0105 (8)−0.0010 (8)
C50.0288 (10)0.0427 (10)0.0431 (10)0.0101 (8)0.0192 (9)−0.0002 (9)
C60.0386 (10)0.0316 (9)0.0370 (9)0.0056 (8)0.0239 (8)−0.0013 (8)
C70.0307 (9)0.0239 (8)0.0261 (8)−0.0002 (7)0.0142 (7)0.0004 (7)
C80.0273 (9)0.0471 (10)0.0247 (9)0.0033 (8)0.0083 (7)0.0042 (8)
C90.0256 (9)0.0318 (9)0.0311 (9)0.0069 (7)0.0117 (8)0.0062 (7)
C100.0373 (10)0.0296 (9)0.0323 (9)−0.0014 (7)0.0207 (8)−0.0073 (7)
C110.0356 (11)0.0634 (13)0.0266 (9)−0.0058 (10)0.0128 (8)−0.0115 (9)

Geometric parameters (Å, °)

S1—C31.7953 (16)C5—C61.387 (3)
S1—S1i2.0528 (13)C5—H50.9500
O1—C11.2499 (19)C6—C71.378 (2)
O2—C11.270 (2)C6—H60.9500
O3—C81.411 (2)C7—H70.9500
O3—H30.8401C8—C91.509 (3)
N1—C91.489 (2)C8—H8A0.9900
N1—C101.492 (2)C8—H8B0.9900
N1—H1A0.9200C9—H9A0.9900
N1—H1B0.9200C9—H9B0.9900
C1—C21.502 (2)C10—C111.503 (3)
C2—C71.400 (2)C10—H10A0.9900
C2—C31.407 (2)C10—H10B0.9900
C3—C41.393 (2)C11—H11A0.9800
C4—C51.377 (3)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C3—S1—S1i104.39 (6)C6—C7—H7119.3
C8—O3—H3105.1C2—C7—H7119.3
C9—N1—C10114.12 (13)O3—C8—C9113.00 (16)
C9—N1—H1A108.7O3—C8—H8A109.0
C10—N1—H1A108.7C9—C8—H8A109.0
C9—N1—H1B108.7O3—C8—H8B109.0
C10—N1—H1B108.7C9—C8—H8B109.0
H1A—N1—H1B107.6H8A—C8—H8B107.8
O1—C1—O2123.69 (15)N1—C9—C8112.07 (14)
O1—C1—C2118.79 (14)N1—C9—H9A109.2
O2—C1—C2117.52 (14)C8—C9—H9A109.2
C7—C2—C3118.91 (15)N1—C9—H9B109.2
C7—C2—C1118.46 (14)C8—C9—H9B109.2
C3—C2—C1122.62 (14)H9A—C9—H9B107.9
C4—C3—C2118.84 (15)N1—C10—C11110.34 (14)
C4—C3—S1121.51 (13)N1—C10—H10A109.6
C2—C3—S1119.63 (12)C11—C10—H10A109.6
C5—C4—C3121.12 (17)N1—C10—H10B109.6
C5—C4—H4119.4C11—C10—H10B109.6
C3—C4—H4119.4H10A—C10—H10B108.1
C4—C5—C6120.48 (17)C10—C11—H11A109.5
C4—C5—H5119.8C10—C11—H11B109.5
C6—C5—H5119.8H11A—C11—H11B109.5
C7—C6—C5119.15 (16)C10—C11—H11C109.5
C7—C6—H6120.4H11A—C11—H11C109.5
C5—C6—H6120.4H11B—C11—H11C109.5
C6—C7—C2121.48 (16)
O1—C1—C2—C7153.69 (15)C2—C3—C4—C5−1.4 (3)
O2—C1—C2—C7−26.3 (2)S1—C3—C4—C5177.14 (15)
O1—C1—C2—C3−25.0 (2)C3—C4—C5—C60.9 (3)
O2—C1—C2—C3155.09 (14)C4—C5—C6—C70.5 (3)
C7—C2—C3—C40.6 (2)C5—C6—C7—C2−1.3 (3)
C1—C2—C3—C4179.26 (15)C3—C2—C7—C60.7 (2)
C7—C2—C3—S1−177.96 (12)C1—C2—C7—C6−177.99 (15)
C1—C2—C3—S10.7 (2)C10—N1—C9—C8−177.21 (14)
S1i—S1—C3—C416.34 (15)O3—C8—C9—N1−66.5 (2)
S1i—S1—C3—C2−165.14 (11)C9—N1—C10—C11177.61 (15)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.921.942.840 (2)164
N1—H1B···O20.921.852.7617 (19)171
O3—H3···O2ii0.841.922.763 (2)177

Symmetry codes: (ii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2030).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography