PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o537.
Published online 2010 February 6. doi:  10.1107/S1600536810002618
PMCID: PMC2983622

1-{4-[(1H-1,2,4-Triazol-1-yl)meth­yl]benz­yl}-1H-1,2,4-triazol-4-ium perchlorate

Abstract

In the crystal structure of the title compound, C12H13N6 +·ClO4 , the cation, located about an inversion center, is monoprotonated, and one H atom is disordered over two sites on N atoms of the two triazole rings, each with an occupancy factor of 0.5. The perchlorate anion has C 2 symmetry, the Cl atom and one O atom lying on the twofold rotation axis; the anion is thus disordered over two sites of equal occupancy. In the cation, the triazole ring makes a dihedral angle of 84.75 (7)° with the plane of the benzene ring. In the crystal, inter­molecular N—H(...)N hydrogen bonding between the triazole and triazolium rings links the cations into a wave-like supra­molecular chain. Weak inter­molecular C—H(...)N and C—H(...)O hydrogen bonding is also present.

Related literature

For the versatile conformations of the flexible 1,4-bis­(1,2,4-triazol-1-yl-meth­yl)benzene ligand, see: Arion et al. (2003 [triangle]); Peng et al. (2004 [triangle], 2006 [triangle]); Meng et al. (2004 [triangle]); Li et al. (2005 [triangle]); Ding et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o537-scheme1.jpg

Experimental

Crystal data

  • C12H13N6 +·ClO4
  • M r = 340.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o537-efi3.jpg
  • a = 15.140 (5) Å
  • b = 11.362 (3) Å
  • c = 10.408 (3) Å
  • β = 124.500 (5)°
  • V = 1475.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 297 K
  • 0.20 × 0.15 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.944, T max = 0.961
  • 4272 measured reflections
  • 1436 independent reflections
  • 1215 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.139
  • S = 1.09
  • 1436 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002618/xu2715sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002618/xu2715Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent years, there has been of great interest in the design and utilization of 1,2,4-triazole and its derivatives in coordination and biological chemistry for they represent the simple small molecular ligands. Among them, 1,4-Bis(1,2,4-triazol-1-yl-methyl)benzene (L) has attracted significant attention because of its versatile conformations arising from the flexible rotation of σ bonds of two methylene carbon atoms (Csp3) between the terminal triazole groups and the benzene ring (Arion, et al., 2003; Peng, et al., 2004, 2006; Meng, et al., 2004; Li et al., 2005; Ding, et al. 2009). To further understand the supramolecular behavior of this ligand, we report herein the crystal structure of the title compound, [C12H13N6]+.ClO4-(I).

A perspective view of (I), including the atomic numbering scheme, is shown in Figure 1. The monoprotonated cationic HL+ moiety of compound (I) crystallizes around an inversion center with a half molecule in the asymmetric unit. The anionic perchlorate is disorder over two positions related by a C2 axis, which crosses Cl1 and O3 atoms. Within each discrete tran-configurational cation, the triazole/triazolium ring makes a dihedral angle of 84.75 (7)° with the central benzene ring. Strong N—H···N interactions between triazole and triazolium groups join these cationic molecules into an infinite wavelike chain running along the crystallographic [1 0 1] direction (Figure 2). The final crystal structure results in a three-dimensional (3-D) hydrogen bonding network through the linkage of multiple C—H···N and C—H···O hydrogen bonds between the cationic subunits and perchlorate anions (Table 1).

Experimental

Zn(ClO4)2.6H2O (74 mg, 0.2 mmol) and 1,4-bis(1,2,4-triazol-1-yl-methyl)benzene (L) (48 mg, 0.2 mmol) was dissolved in a 8 ml ethanol-water mixture (V:V = 1:3) at room temperature. The colorless crystals were obtained after several days. Yield: 60% (based on L).

Refinement

All hydrogen atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and Uiso(H)=1.2Ueq (C). H atom on N atom of triazolium was firstly located in a difference Fourier map and then refined with restrained N—H = 0.86 Å. It is notable that triazolium hydrogen atom was assigned to half occupancy for charge balance.

Figures

Fig. 1.
A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) -x + 1/2, -y + 1/2, -z + 1.
Fig. 2.
A one-dimensional hydrogen-bonding chain motif of (I).

Crystal data

C12H13N6+·ClO4F(000) = 704
Mr = 340.73Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1942 reflections
a = 15.140 (5) Åθ = 2.4–27.5°
b = 11.362 (3) ŵ = 0.29 mm1
c = 10.408 (3) ÅT = 297 K
β = 124.500 (5)°Block, colorless
V = 1475.5 (7) Å30.20 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1436 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −12→18
Tmin = 0.944, Tmax = 0.961k = −13→13
4272 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0491P)2 + 2.663P] where P = (Fo2 + 2Fc2)/3
1436 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.3304 (2)0.1668 (2)0.5558 (3)0.0423 (6)
H10.38480.11120.59290.051*
C20.27311 (19)0.1755 (2)0.6225 (3)0.0388 (5)
C30.19301 (19)0.2594 (2)0.5662 (3)0.0417 (6)
H30.15450.26650.61060.050*
C40.3004 (2)0.0963 (3)0.7575 (3)0.0526 (7)
H4A0.35780.04330.77990.063*
H4B0.32600.14410.84940.063*
C60.1572 (2)0.0310 (2)0.7933 (3)0.0495 (6)
H60.17350.08090.87480.059*
C50.0862 (2)−0.0993 (2)0.6166 (3)0.0471 (6)
H50.0403−0.15880.55140.057*
N10.20807 (16)0.02713 (17)0.7242 (2)0.0416 (5)
N20.16400 (17)−0.05709 (19)0.6103 (2)0.0466 (5)
N30.07910 (18)−0.0479 (2)0.7274 (3)0.0506 (6)
H3A0.0338−0.06300.75010.061*0.50
Cl10.50000.16865 (9)0.25000.0749 (4)
O10.3684 (4)0.1843 (5)0.1366 (6)0.0902 (16)0.50
O20.5109 (9)0.1370 (12)0.1316 (12)0.136 (5)0.50
O30.50000.2786 (5)0.25000.254 (5)
O40.5108 (10)0.0799 (8)0.3416 (13)0.122 (3)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0410 (12)0.0427 (13)0.0453 (13)0.0003 (10)0.0257 (11)−0.0002 (10)
C20.0408 (12)0.0412 (12)0.0334 (11)−0.0083 (10)0.0203 (10)−0.0022 (9)
C30.0451 (13)0.0479 (13)0.0432 (13)−0.0057 (10)0.0316 (11)−0.0048 (10)
C40.0472 (14)0.0639 (17)0.0379 (13)−0.0091 (13)0.0188 (11)0.0072 (12)
C60.0652 (17)0.0506 (14)0.0467 (14)0.0094 (13)0.0400 (13)0.0098 (11)
C50.0482 (14)0.0473 (14)0.0451 (13)−0.0006 (11)0.0260 (12)0.0074 (11)
N10.0500 (11)0.0451 (11)0.0342 (10)−0.0005 (9)0.0266 (9)0.0069 (8)
N20.0533 (12)0.0522 (12)0.0382 (10)−0.0024 (10)0.0283 (10)0.0015 (9)
N30.0535 (13)0.0567 (13)0.0569 (13)0.0105 (11)0.0405 (11)0.0181 (11)
Cl10.1341 (12)0.0393 (5)0.0914 (9)0.0000.0878 (9)0.000
O10.049 (2)0.122 (4)0.085 (3)0.014 (3)0.030 (3)−0.006 (3)
O20.096 (6)0.252 (15)0.073 (4)0.022 (8)0.055 (4)−0.004 (7)
O30.283 (10)0.061 (3)0.401 (14)0.0000.183 (10)0.000
O40.129 (7)0.105 (6)0.120 (7)0.012 (5)0.064 (6)0.061 (5)

Geometric parameters (Å, °)

C1—C21.388 (3)C5—N31.350 (3)
C1—C3i1.389 (3)C5—H50.9300
C1—H10.9300N1—N21.367 (3)
C2—C31.385 (3)N3—H3A0.8600
C2—C41.515 (3)Cl1—O31.249 (5)
C3—C1i1.389 (3)Cl1—O4ii1.333 (8)
C3—H30.9300Cl1—O41.333 (8)
C4—N11.464 (3)Cl1—O21.381 (9)
C4—H4A0.9700Cl1—O2ii1.381 (9)
C4—H4B0.9700Cl1—O1ii1.653 (5)
C6—N11.319 (3)Cl1—O11.653 (4)
C6—N31.324 (4)O2—O4ii0.843 (13)
C6—H60.9300O4—O2ii0.843 (13)
C5—N21.308 (3)O4—O4ii1.74 (2)
C2—C1—C3i120.4 (2)C6—N3—H3A127.6
C2—C1—H1119.8C5—N3—H3A127.6
C3i—C1—H1119.8O3—Cl1—O4ii139.2 (5)
C3—C2—C1118.9 (2)O3—Cl1—O4139.2 (5)
C3—C2—C4121.0 (2)O4ii—Cl1—O481.7 (10)
C1—C2—C4120.1 (2)O3—Cl1—O2105.1 (5)
C2—C3—C1i120.7 (2)O4—Cl1—O2114.4 (8)
C2—C3—H3119.6O3—Cl1—O2ii105.1 (5)
C1i—C3—H3119.6O4ii—Cl1—O2ii114.4 (8)
N1—C4—C2112.1 (2)O2—Cl1—O2ii149.8 (11)
N1—C4—H4A109.2O3—Cl1—O1ii83.8 (2)
C2—C4—H4A109.2O4ii—Cl1—O1ii101.6 (6)
N1—C4—H4B109.2O4—Cl1—O1ii87.8 (6)
C2—C4—H4B109.2O2—Cl1—O1ii87.7 (5)
H4A—C4—H4B107.9O2ii—Cl1—O1ii95.5 (5)
N1—C6—N3108.7 (2)O3—Cl1—O183.8 (2)
N1—C6—H6125.6O4ii—Cl1—O187.8 (6)
N3—C6—H6125.6O4—Cl1—O1101.6 (6)
N2—C5—N3113.2 (2)O2—Cl1—O195.5 (5)
N2—C5—H5123.4O2ii—Cl1—O187.7 (5)
N3—C5—H5123.4O1ii—Cl1—O1167.6 (4)
C6—N1—N2110.3 (2)O4ii—O2—Cl168.8 (9)
C6—N1—C4128.9 (2)O2ii—O4—Cl175.0 (11)
N2—N1—C4120.8 (2)O2ii—O4—O4ii119.7 (14)
C5—N2—N1103.0 (2)Cl1—O4—O4ii49.2 (5)
C6—N3—C5104.8 (2)
C3i—C1—C2—C3−0.5 (4)O3—Cl1—O2—O4ii−163.6 (14)
C3i—C1—C2—C4−178.9 (2)O4—Cl1—O2—O4ii27 (2)
C1—C2—C3—C1i0.5 (4)O2ii—Cl1—O2—O4ii16.4 (14)
C4—C2—C3—C1i178.8 (2)O1ii—Cl1—O2—O4ii113.4 (15)
C3—C2—C4—N158.5 (3)O1—Cl1—O2—O4ii−78.6 (15)
C1—C2—C4—N1−123.1 (3)O3—Cl1—O4—O2ii25 (2)
N3—C6—N1—N2−0.7 (3)O4ii—Cl1—O4—O2ii−155 (2)
N3—C6—N1—C4−179.2 (2)O2—Cl1—O4—O2ii−171.0 (9)
C2—C4—N1—C6−115.6 (3)O1ii—Cl1—O4—O2ii102.5 (15)
C2—C4—N1—N266.0 (3)O1—Cl1—O4—O2ii−69.4 (15)
N3—C5—N2—N1−0.5 (3)O3—Cl1—O4—O4ii180.000 (3)
C6—N1—N2—C50.7 (3)O2—Cl1—O4—O4ii−15.6 (12)
C4—N1—N2—C5179.3 (2)O2ii—Cl1—O4—O4ii155 (2)
N1—C6—N3—C50.3 (3)O1ii—Cl1—O4—O4ii−102.1 (6)
N2—C5—N3—C60.1 (3)O1—Cl1—O4—O4ii86.0 (6)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N3iii0.861.862.690 (5)162
C1—H1···O4iv0.932.543.445 (12)164
C3—H3···O2v0.932.553.403 (15)152
C4—H4A···O4vi0.972.463.430 (15)176
C6—H6···N2vi0.932.553.256 (4)133

Symmetry codes: (iii) −x, y, −z+3/2; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+1/2, z+1/2; (vi) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2715).

References

  • Arion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). Inorg. Chem.42, 6024–6031. [PubMed]
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des.9, 593–601.
  • Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun.18, 2333–2335. [PubMed]
  • Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem.43, 3528–3536. [PubMed]
  • Peng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des.6, 994–998.
  • Peng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem.23, 985–988.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography