PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o563.
Published online 2010 February 6. doi:  10.1107/S1600536810003909
PMCID: PMC2983615

2,2′-Bipyridin-1-ium 3-nitro­benzene­sulfonate

Abstract

In the title compound, C10H9N2 +·C6H4NO5S, the dihedral angle between the aromatic rings of the cation is 9.42 (7)°. In the crystal, the anions and cations are linked by C—H(...)O and N—H(...)O hydrogen bonds, generating R 2 1(5) and R 4 4(14) rings, respectively. These hydrogen bonds also provide packing along [110].

Related literature

For 2,2′-bipyridinium, see: Grummt et al. (2004 [triangle]); Branowska et al. (2005 [triangle]); Zhang et al. (2007 [triangle]); Kavitha et al. (2006 [triangle]). For aromatic sulfonates, see: Sharma et al. (2004 [triangle]); Vembu et al. (2009 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o563-scheme1.jpg

Experimental

Crystal data

  • C10H9N2 +·C6H4NO5S
  • M r = 359.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o563-efi3.jpg
  • a = 5.9527 (3) Å
  • b = 7.4674 (3) Å
  • c = 17.8800 (7) Å
  • α = 79.085 (3)°
  • β = 89.121 (4)°
  • γ = 87.939 (3)°
  • V = 779.87 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.60 × 0.51 × 0.38 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED32, Stoe & Cie, 2002 [triangle]) T min = 0.859, T max = 0.935
  • 17821 measured reflections
  • 3069 independent reflections
  • 2997 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.05
  • 3069 reflections
  • 230 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003909/fj2270sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003909/fj2270Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

supplementary crystallographic information

Comment

In this study, we have examined the title compound obtained by synthesize of the meta-nitro benzene sulfonic acid sodium salt and the bipyridine. The 2,2'-bipyridine and its fused analogues are exhibit important application in coordination and supramolecular chemistry (Grummt et al., 2004; Branowska et al., 2005; Zhang et al., 2007; Kavitha et al., 2006) while aromatic sulfonates draw attention because of their industrial applications as surfactants, dyes, fuel and lubricant detergents (Sharma et al., 2004; Vembu et al., 2009).

The asymmetric unit of the title compound contains protonated 2,2'-bipyridin-1-ium cation and deprotonated m-nitrobenzenesulfonate anion. A perspective unit of the asymmetric unit is presented in Fig. 1. In the asymmetric unit, the mean planes of the anionic (except O atoms bounded S atom) and cationic moieties oriented to each other with 6.88 (5)°. However, the protonated and deprotonated rings of bipyridinium oriented to the aromatic ring of anionic moiety with 9.16 (5)° and 4.79 (5)°, respectively. The two pyridine rings forming bipyridinium moiety are slightly twisted by 9.42 (7)°.

For the bipyridinium cation, the N—C bond distances are in the range 1.331 (2) Å-1.3446 (18)Å and, as expected, the protonated part of the bipyridinium has slightly different bond lengths and angles than non-protonated part. The C1—N1—C5 angle [123.75 (13)°] is larger than the C6—N2—C10 angle [117.10 (14)°].

The S—O bond distances for m-nitrobenzenesulfonate are in the range 1.4370 (13) Å-1.4466 (13) Å, while the adjacent O—S—O angles are in the range 112.77 (8)–113.72 (8)°. The nitro group is slightly deviated from planarity with the dihedral angle of 2.98 (16)° between the benzene and nitro moieties.

The anionic and cationic moieties are linked by C—H···O and N—H···O type hydrogen bonds. In the structure, the nitrobenzene sulfonate anion acts as donor while bipyridinium cation acts as acceptor. The C1—H1···O4i and C2—H2···O4i interactions constitute a bifurcated acceptor bonds generating R21(5) rings in graph-set notation (Bernstein et al., 1995). It is also found that the R44(14) ring motives are generated by the N1—H1A···O3 and C1—H1···O4i hydrogen bonds (Fig. 2). These adjacent rings are provide packing along to the direction [110]. Furthermore, the intra-molecular N1—H1A···N2 hydrogen bonds generate S(5) ring motives (Fig. 1). Geometric details of hydrogen bonds are given in Table 1.

Experimental

1.944 g Mn-BSA (3 mmol) was dissolved in 10 ml of water and a solution of bipyridine (0.937 g, 6 mmol) in 3 ml e thanol was added into the solution. After stirring for 10 minutes, the solution was left for crystallization and a precipitate of Mn(OH)2 was obtained and resolved again with the addition of 2 ml concentrate HCI into the mixture. Two different forms of crystals, one has a yellow colour while other is colurless, were grown after one day. The crystals were washed with slightly acidic water to separate from each other. The yellow one was resolved whereas the colourless one was not within the acidic solution. Transparent square-shaped crystals of X-ray quality were dried in vacuo.

Refinement

The H atom bonded to N atom was located in Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined in riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability. Hydrogen bonds are indicated by dashed lines.
Fig. 2.
Partial packing part of the crystal structure of the title compound showing the formation of R21(5) and R44(14) rings running through the direction [110] generated by C—H···O and N—H..O type hydrogen bonds. Symmetry ...

Crystal data

C10H9N2+·C6H4NO5SZ = 2
Mr = 359.36F(000) = 372
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9527 (3) ÅCell parameters from 3236 reflections
b = 7.4674 (3) Åθ = 2.3–28.1°
c = 17.8800 (7) ŵ = 0.24 mm1
α = 79.085 (3)°T = 296 K
β = 89.121 (4)°Prism, colourless
γ = 87.939 (3)°0.60 × 0.51 × 0.38 mm
V = 779.87 (6) Å3

Data collection

Stoe IPDS II diffractometer3069 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
plane graphiteRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.3°
rotation method scansh = −7→7
Absorption correction: integration (X-RED32, Stoe & Cie, 2002)k = −9→9
Tmin = 0.859, Tmax = 0.935l = −22→22
17821 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2343P] where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9249 (3)0.6631 (2)0.55700 (9)0.0472 (3)
H10.79630.61450.54100.057*
C21.0720 (3)0.7523 (2)0.50459 (9)0.0518 (4)
H21.04530.76520.45270.062*
C31.2602 (3)0.8224 (2)0.53019 (10)0.0551 (4)
H31.36330.88150.49530.066*
C41.2977 (3)0.8059 (2)0.60717 (9)0.0495 (4)
H41.42350.85630.62410.059*
C51.1473 (2)0.71416 (19)0.65879 (8)0.0393 (3)
C61.1649 (2)0.68668 (19)0.74248 (8)0.0399 (3)
C71.3558 (3)0.7287 (2)0.77801 (9)0.0475 (4)
H71.48200.77110.74970.057*
C81.3540 (3)0.7062 (2)0.85644 (10)0.0534 (4)
H81.47850.73540.88200.064*
C91.1657 (3)0.6399 (2)0.89627 (9)0.0554 (4)
H91.16010.62440.94910.066*
C100.9862 (3)0.5970 (2)0.85640 (9)0.0532 (4)
H100.86110.54900.88380.064*
C110.2858 (2)0.1898 (2)0.87745 (8)0.0416 (3)
C120.4108 (2)0.24262 (19)0.81181 (8)0.0383 (3)
H120.55120.29240.81350.046*
C130.3213 (2)0.21927 (18)0.74351 (8)0.0362 (3)
C140.1093 (2)0.1485 (2)0.74167 (9)0.0416 (3)
H140.04840.13530.69550.050*
C15−0.0112 (2)0.0977 (2)0.80866 (10)0.0475 (4)
H15−0.15270.04970.80720.057*
C160.0758 (3)0.1174 (2)0.87731 (9)0.0476 (4)
H16−0.00470.08280.92240.057*
N10.9666 (2)0.64630 (17)0.63119 (7)0.0415 (3)
N20.9811 (2)0.62032 (18)0.78077 (7)0.0467 (3)
N30.3810 (3)0.2146 (2)0.94976 (7)0.0536 (3)
O10.5688 (2)0.2735 (2)0.94961 (8)0.0795 (5)
O20.2667 (3)0.1770 (3)1.00732 (8)0.0897 (5)
O30.6150 (2)0.42572 (17)0.66965 (7)0.0617 (3)
O40.3309 (2)0.3147 (2)0.59711 (7)0.0657 (4)
O50.62591 (19)0.11015 (17)0.65774 (7)0.0547 (3)
S10.48694 (6)0.27252 (5)0.659004 (19)0.04088 (12)
H1A0.875 (3)0.581 (3)0.6636 (12)0.062 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0479 (8)0.0537 (9)0.0416 (8)−0.0113 (7)−0.0061 (6)−0.0109 (6)
C20.0611 (10)0.0582 (9)0.0368 (8)−0.0129 (8)−0.0020 (7)−0.0086 (7)
C30.0602 (10)0.0616 (10)0.0444 (9)−0.0224 (8)0.0095 (7)−0.0093 (7)
C40.0476 (8)0.0567 (9)0.0473 (8)−0.0203 (7)0.0024 (7)−0.0145 (7)
C50.0392 (7)0.0404 (7)0.0405 (7)−0.0068 (6)−0.0010 (6)−0.0123 (6)
C60.0417 (7)0.0395 (7)0.0406 (7)−0.0033 (6)−0.0011 (6)−0.0121 (6)
C70.0434 (8)0.0533 (9)0.0489 (9)−0.0038 (7)−0.0046 (7)−0.0166 (7)
C80.0551 (9)0.0565 (9)0.0522 (9)0.0040 (7)−0.0161 (7)−0.0191 (7)
C90.0696 (11)0.0583 (10)0.0394 (8)0.0060 (8)−0.0064 (8)−0.0130 (7)
C100.0582 (10)0.0587 (10)0.0422 (8)−0.0048 (8)0.0049 (7)−0.0085 (7)
C110.0433 (7)0.0448 (8)0.0365 (7)0.0007 (6)0.0016 (6)−0.0077 (6)
C120.0339 (7)0.0437 (7)0.0381 (7)−0.0040 (6)0.0000 (5)−0.0089 (6)
C130.0337 (6)0.0380 (7)0.0367 (7)−0.0052 (5)−0.0001 (5)−0.0060 (5)
C140.0347 (7)0.0449 (8)0.0461 (8)−0.0053 (6)−0.0030 (6)−0.0096 (6)
C150.0332 (7)0.0481 (8)0.0604 (10)−0.0075 (6)0.0055 (6)−0.0080 (7)
C160.0436 (8)0.0489 (8)0.0486 (8)−0.0032 (6)0.0121 (7)−0.0055 (7)
N10.0404 (6)0.0464 (7)0.0389 (6)−0.0118 (5)0.0005 (5)−0.0087 (5)
N20.0470 (7)0.0523 (7)0.0417 (7)−0.0082 (6)0.0016 (5)−0.0103 (5)
N30.0599 (9)0.0650 (9)0.0364 (7)−0.0018 (7)0.0023 (6)−0.0109 (6)
O10.0639 (8)0.1318 (14)0.0470 (7)−0.0203 (9)−0.0070 (6)−0.0242 (8)
O20.1000 (11)0.1333 (14)0.0388 (7)−0.0341 (10)0.0193 (7)−0.0201 (8)
O30.0661 (7)0.0675 (8)0.0542 (7)−0.0363 (6)0.0115 (6)−0.0130 (6)
O40.0549 (7)0.1012 (10)0.0376 (6)−0.0137 (7)−0.0108 (5)−0.0014 (6)
O50.0484 (6)0.0670 (7)0.0517 (7)−0.0053 (5)0.0090 (5)−0.0189 (5)
S10.03790 (19)0.0538 (2)0.03193 (18)−0.01426 (15)−0.00014 (13)−0.00822 (14)

Geometric parameters (Å, °)

C1—N11.335 (2)C10—H100.9300
C1—C21.367 (2)C11—C161.380 (2)
C1—H10.9300C11—C121.381 (2)
C2—C31.373 (2)C11—N31.466 (2)
C2—H20.9300C12—C131.383 (2)
C3—C41.379 (2)C12—H120.9300
C3—H30.9300C13—C141.3891 (19)
C4—C51.379 (2)C13—S11.7798 (14)
C4—H40.9300C14—C151.383 (2)
C5—N11.3446 (18)C14—H140.9300
C5—C61.476 (2)C15—C161.375 (2)
C6—N21.3413 (19)C15—H150.9300
C6—C71.384 (2)C16—H160.9300
C7—C81.380 (2)N1—H1A0.88 (2)
C7—H70.9300N3—O11.2153 (19)
C8—C91.375 (3)N3—O21.2180 (19)
C8—H80.9300O3—S11.4406 (12)
C9—C101.374 (2)O4—S11.4371 (12)
C9—H90.9300O5—S11.4466 (12)
C10—N21.331 (2)
N1—C1—C2119.67 (14)C16—C11—N3119.28 (13)
N1—C1—H1120.2C12—C11—N3117.98 (13)
C2—C1—H1120.2C11—C12—C13118.09 (13)
C1—C2—C3118.59 (15)C11—C12—H12121.0
C1—C2—H2120.7C13—C12—H12121.0
C3—C2—H2120.7C12—C13—C14120.33 (13)
C2—C3—C4120.66 (15)C12—C13—S1118.88 (10)
C2—C3—H3119.7C14—C13—S1120.75 (11)
C4—C3—H3119.7C15—C14—C13119.86 (14)
C5—C4—C3119.53 (14)C15—C14—H14120.1
C5—C4—H4120.2C13—C14—H14120.1
C3—C4—H4120.2C16—C15—C14120.79 (14)
N1—C5—C4117.78 (14)C16—C15—H15119.6
N1—C5—C6116.68 (13)C14—C15—H15119.6
C4—C5—C6125.53 (13)C15—C16—C11118.18 (14)
N2—C6—C7123.11 (14)C15—C16—H16120.9
N2—C6—C5114.67 (13)C11—C16—H16120.9
C7—C6—C5122.21 (14)C1—N1—C5123.75 (13)
C8—C7—C6118.32 (15)C1—N1—H1A117.7 (13)
C8—C7—H7120.8C5—N1—H1A118.4 (13)
C6—C7—H7120.8C10—N2—C6117.10 (14)
C9—C8—C7119.08 (15)O1—N3—O2122.94 (16)
C9—C8—H8120.5O1—N3—C11118.79 (13)
C7—C8—H8120.5O2—N3—C11118.26 (15)
C10—C9—C8118.62 (15)O4—S1—O3113.69 (8)
C10—C9—H9120.7O4—S1—O5113.72 (8)
C8—C9—H9120.7O3—S1—O5112.77 (8)
N2—C10—C9123.73 (16)O4—S1—C13106.14 (7)
N2—C10—H10118.1O3—S1—C13104.51 (7)
C9—C10—H10118.1O5—S1—C13104.90 (7)
C16—C11—C12122.74 (14)
N1—C1—C2—C30.0 (3)C13—C14—C15—C160.4 (2)
C1—C2—C3—C4−1.1 (3)C14—C15—C16—C110.3 (2)
C2—C3—C4—C51.6 (3)C12—C11—C16—C15−0.1 (2)
C3—C4—C5—N1−1.0 (2)N3—C11—C16—C15179.13 (14)
C3—C4—C5—C6−179.67 (15)C2—C1—N1—C50.6 (2)
N1—C5—C6—N2−9.30 (19)C4—C5—N1—C1−0.1 (2)
C4—C5—C6—N2169.42 (15)C6—C5—N1—C1178.68 (14)
N1—C5—C6—C7171.48 (14)C9—C10—N2—C61.2 (3)
C4—C5—C6—C7−9.8 (2)C7—C6—N2—C100.8 (2)
N2—C6—C7—C8−2.0 (2)C5—C6—N2—C10−178.46 (13)
C5—C6—C7—C8177.20 (14)C16—C11—N3—O1177.87 (16)
C6—C7—C8—C91.3 (2)C12—C11—N3—O1−2.9 (2)
C7—C8—C9—C100.5 (3)C16—C11—N3—O2−2.9 (2)
C8—C9—C10—N2−1.8 (3)C12—C11—N3—O2176.31 (16)
C16—C11—C12—C13−0.8 (2)C12—C13—S1—O4−154.95 (12)
N3—C11—C12—C13179.98 (13)C14—C13—S1—O427.62 (14)
C11—C12—C13—C141.5 (2)C12—C13—S1—O3−34.49 (13)
C11—C12—C13—S1−175.98 (11)C14—C13—S1—O3148.08 (12)
C12—C13—C14—C15−1.3 (2)C12—C13—S1—O584.36 (12)
S1—C13—C14—C15176.12 (11)C14—C13—S1—O5−93.07 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.553.1426 (19)122
C2—H2···O4i0.932.553.142 (2)122
C4—H4···O5ii0.932.453.3089 (19)153
N1—H1A···O30.88 (2)1.95 (2)2.7096 (16)142.9 (18)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2270).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Branowska, D., Rykowski, A. & Wysocki, W. (2005). Tetrahedron Lett.46, 6223–6226.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Grummt, U. W. & Erhardt, S. (2004). J. Mol. Struct. (THEOCHEM), 685, 133–137.
  • Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169. [PubMed]
  • Sharma, R. J., Bala, R., Sharma, R., Raczyńska, J. & Rychlewska, U. (2004). J. Mol. Struct.738, 247–252.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  • Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr.39, 515–518.
  • Zhang, D., Telo, J. P., Liao, C., Hightower, S. E. & Clennan, E. L. (2007). J. Phys. Chem. A, 111, 13567–13574. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography