PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m310–m311.
Published online 2010 February 17. doi:  10.1107/S1600536810005763
PMCID: PMC2983600

Poly[[(2,2′-bipyridine)­(μ3-2-sulfonatobenzoato)lead(II)] dihydrate]

Abstract

In the title compound, {[Pb(sbc)(bpy)]·2H2O}n [bpy is 2,2′-bipyridine (C10H8N2) and sbc is the 2-sulfonatobenzoate dianion (C7H4O5S)], the PbII ion is bonded to four O atoms including carboxyl­ate and sulfonate from three sbc dianions, and two N atoms from a chelating 2,2′-bipyridine ligand. The sbc ligand acts as a μ3-bridging ligand by one O atom of the sulfonate group and the two O atoms of the carboxyl­ate. Of these two last O atoms, one builds up a dinuclear framework arranged around an inversion center whereas the second one links each dinuclear unit, forming a chain extending along the b axis. These polymeric chains are linked through O—H(...)O hydrogen bonds involving the water mol­ecules, forming a layer parallel to (10An external file that holds a picture, illustration, etc.
Object name is e-66-0m310-efi1.jpg).

Related literature

For general background to lead coordination modes, see: Bridgewater & Parkin (2000 [triangle]); Cecconi et al. (2003 [triangle]); Taheri & Morsali (2006 [triangle]); Wang & Vittal (2003 [triangle]); Yin & Yu (2007 [triangle]); Foreman et al. (2000 [triangle]). For coordination based on sbc ligands, see: Xiao (2006 [triangle]); Xiao et al. (2005 [triangle], 2008 [triangle]); Ying et al. (2003 [triangle]); Li et al. (2008 [triangle]); Shi et al. (2007 [triangle]). For information on sulfonate geometry, see: Onoda et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m310-scheme1.jpg

Experimental

Crystal data

  • [Pb(C7H4O5S)(C10H8N2)]·2H2O
  • M r = 599.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m310-efi2.jpg
  • a = 15.3464 (11) Å
  • b = 6.9951 (5) Å
  • c = 17.2844 (12) Å
  • β = 96.629 (1)°
  • V = 1843.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.31 mm−1
  • T = 298 K
  • 0.50 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.11, T max = 0.26
  • 9382 measured reflections
  • 3318 independent reflections
  • 2944 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.058
  • S = 1.04
  • 3318 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005763/dn2537sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005763/dn2537Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the National Natural Science Foundation of China (grant No. 20871095).

supplementary crystallographic information

Comment

Lead(II) is capable of exhibiting variable coordination mode forming a range of coordination polymers and polynuclear complexes geometry (Wang & Vittal, 2003; Cecconi et al., 2003; Bridgewater et al., 2000, Ying et al., 2003; Taheri & Morsali, 2006; Yin & Yu, 2007). The absence of crystal field stabilisation energy effects also allows the Pb(II) cations to adopt a range of different coordination geometries not restricted to octahedral, tetrahedral or square planar (Foreman et al., 2000). Sbc is an interesting ligand with both carboxylate and sulfonate acting as potential coordinating groups. Some metal-organic coordinations based on Sbc ligand have been reported (Li et al., 2008, Xiao et al., 2005, Xiao et al., 2006, Xiao et al., 2008, Shi et al., 2007). Thus, we have selected the Pb-sbc system to extend our research and we present here the crystal structure of the title compound, [Pb(sbc)(bpy)].2H2O (bpy is 2,2'-bipyridine and sbc is 2-sulfobenzenecarboxylate dianion), (I).

The Pb atom might be regarded as six or seven coordinates if the second carboxylate O atom is considered as weakly bonding to the metal as observed in the related compound (C34 H20 N2 O8 Pb2)n (Yin & Yu, 2007) (Fig. 1). The Pb1—O2(symmetry code: ), 3.045 \%A, is much longer than the 2.745 \%A reported in the related complex, but it is still shorter than the sum of the Van der Waals radii. The geometry around the metal might be described as highly distorted monocaped octahedron.

The sbc ligand acts as a µ3-bridging ligands by one O atom of the sulfone group, and the two O atoms of the carboxylate. Of these two last O atoms, one is building a dinuclear framework arranged around inversion center whereas the second one is linking each dinuclear unit to form a chain developping along the b axis.(Fig.2).

Interestingly, the water molecules are intercalated between the polymeric chains and link these chains through O-H···O hydrogen bonds to build up layers developping parallel to the (1 0 -2) plane (Table 1, Fig. 2).

The S-O distances within the sulfonate fall within the typical range observed for S-O bonds (Onoda et al., 2001). The similarity of the three S—O bond distances suggests that strong conjugation on sulfonate is predominant in (I).

Experimental

The title compound was synthesized by adding the DMF solution (10 ml) of 2,2'-bipyridine (0.03 g, 0.2 mmol) and 2,2'-dithiosalicylic acid (0.06 g, 0.2 mmol) dropwise to a stirred water solution (10 ml) of lead nitrate (0.07 g, 0.2 mmol) at 298 K temperature. Then the reaction mixture was filtered and the filtrate stood for about six weeks until the prism colorless crystals were obtained. The prism shaped crystals suitable for X-ray diffraction were collected by filtration, washed with water and ethanol and dried in air. The structure of (I) was determined by single crystal X-ray crystallography. Intensity data and unit-cell parameters for (I) were measured at 298 K on a Bruker Smart 1000 CCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.71073 Å) and a graphite monochromator using the ω-scan mode. All empirical absorption corrections were applied by using the SADABS program[Bruker, 2002]. The structure was solved by direct methods and refined on F2 by full-matrix leastsquares using the SHELXL-97 program package[Bruker, 2002].

Refinement

The water H atoms were refined subject to the restraint O—H = 0.82 (5) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å with Uiso= 1.2Ueq(parent atom).

Figures

Fig. 1.
The coordination environment of lead (II) ion in (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. Water molecules and H atoms have been omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z; (iii) ...
Fig. 2.
View showing the O-H···O bond network built up by the water molecules intercalated between the polymeric chains. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

[Pb(C7H4O5S)(C10H8N2)]·2H2OF(000) = 1144
Mr = 599.57Dx = 2.161 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3318 reflections
a = 15.3464 (11) Åθ = 2.4–25.2°
b = 6.9951 (5) ŵ = 9.31 mm1
c = 17.2844 (12) ÅT = 298 K
β = 96.629 (1)°Prism, colorless
V = 1843.1 (2) Å30.50 × 0.21 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3318 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
graphiteRint = 0.029
600 frames, delta ω = 2 dgr scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −18→13
Tmin = 0.11, Tmax = 0.26k = −8→8
9382 measured reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3
3318 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.402858 (9)0.234749 (19)−0.017420 (8)0.03015 (7)
S10.25615 (7)−0.17058 (17)−0.11614 (6)0.0407 (3)
O10.43147 (15)−0.1252 (4)0.00541 (15)0.0333 (6)
O20.42527 (16)−0.4252 (4)0.04577 (16)0.0393 (7)
O30.3148 (2)−0.3281 (5)−0.12513 (18)0.0558 (8)
O40.1728 (2)−0.1882 (5)−0.16536 (18)0.0566 (8)
O50.29504 (18)0.0181 (4)−0.12329 (15)0.0503 (8)
N10.4155 (2)0.1825 (5)0.12289 (17)0.0307 (7)
N20.2610 (2)0.2622 (4)0.0397 (2)0.0351 (8)
C10.4933 (2)0.1312 (5)0.1606 (2)0.0352 (9)
H10.54240.13270.13370.042*
C20.5031 (3)0.0765 (6)0.2376 (2)0.0443 (10)
H20.55760.03980.26220.053*
C30.4304 (3)0.0773 (6)0.2774 (2)0.0499 (11)
H30.43510.04000.32940.060*
C40.3511 (3)0.1333 (6)0.2399 (2)0.0476 (11)
H40.30180.13550.26650.057*
C50.3442 (3)0.1870 (5)0.1619 (2)0.0340 (9)
C60.2604 (3)0.2435 (5)0.1169 (3)0.0382 (11)
C70.1840 (4)0.2756 (6)0.1507 (4)0.0584 (15)
H70.18370.26370.20420.070*
C80.1089 (3)0.3251 (8)0.1042 (4)0.0723 (17)
H80.05720.34590.12620.087*
C90.1097 (3)0.3439 (7)0.0258 (4)0.0638 (15)
H90.05920.3776−0.00630.077*
C100.1878 (3)0.3116 (6)−0.0047 (3)0.0500 (12)
H100.18920.3248−0.05810.060*
C110.3901 (3)−0.2673 (5)0.0288 (2)0.0274 (9)
C120.2956 (3)−0.2376 (4)0.0411 (3)0.0308 (9)
C130.2730 (3)−0.2575 (5)0.1167 (3)0.0389 (11)
H130.3152−0.29490.15680.047*
C140.1877 (3)−0.2215 (6)0.1319 (3)0.0491 (13)
H140.1731−0.23190.18250.059*
C150.1244 (3)−0.1702 (6)0.0723 (3)0.0477 (11)
H150.0674−0.14550.08290.057*
C160.1451 (2)−0.1554 (6)−0.0030 (3)0.0412 (10)
H160.1019−0.1232−0.04310.049*
C170.2304 (2)−0.1884 (5)−0.0192 (2)0.0316 (8)
O60.0809 (3)0.4682 (6)−0.1967 (3)0.1033 (15)
H6A0.11490.5621−0.18340.155*
H6B0.04200.5073−0.23240.155*
O70.0420 (2)0.0904 (6)−0.1850 (2)0.0793 (11)
H7A0.08450.0127−0.18440.119*
H7B0.05940.2030−0.19380.119*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.02874 (11)0.03411 (11)0.02743 (11)−0.00222 (5)0.00244 (7)0.00072 (6)
S10.0343 (5)0.0518 (7)0.0355 (6)−0.0060 (5)0.0012 (5)−0.0130 (5)
O10.0276 (13)0.0314 (15)0.0411 (15)−0.0041 (11)0.0041 (12)0.0006 (12)
O20.0319 (14)0.0303 (16)0.0554 (18)0.0020 (11)0.0035 (13)−0.0029 (13)
O30.0476 (18)0.063 (2)0.058 (2)0.0065 (16)0.0098 (16)−0.0280 (18)
O40.0419 (18)0.078 (2)0.0463 (19)−0.0079 (16)−0.0092 (15)−0.0141 (17)
O50.0535 (17)0.060 (2)0.0376 (17)−0.0182 (15)0.0049 (14)0.0002 (14)
N10.0368 (18)0.0277 (17)0.0291 (17)−0.0016 (14)0.0104 (14)−0.0001 (14)
N20.0274 (18)0.030 (2)0.048 (2)−0.0033 (12)0.0056 (17)−0.0017 (13)
C10.041 (2)0.033 (2)0.032 (2)−0.0011 (17)0.0041 (18)−0.0015 (17)
C20.058 (3)0.033 (2)0.039 (3)0.0010 (19)−0.008 (2)0.0034 (18)
C30.078 (3)0.040 (3)0.031 (2)−0.006 (2)0.008 (2)0.0026 (18)
C40.066 (3)0.043 (3)0.039 (2)−0.004 (2)0.026 (2)−0.002 (2)
C50.041 (2)0.0252 (19)0.038 (2)−0.0063 (17)0.0139 (19)−0.0042 (17)
C60.040 (2)0.023 (2)0.054 (3)−0.0020 (15)0.014 (2)−0.0020 (16)
C70.050 (3)0.050 (3)0.082 (4)0.006 (2)0.036 (3)0.001 (2)
C80.046 (3)0.054 (3)0.123 (6)0.009 (2)0.036 (4)−0.001 (4)
C90.035 (3)0.039 (3)0.116 (5)0.004 (2)0.004 (3)−0.006 (3)
C100.036 (2)0.039 (2)0.073 (3)0.001 (2)−0.004 (2)−0.004 (2)
C110.025 (2)0.028 (2)0.029 (2)−0.0016 (14)0.0022 (17)−0.0058 (15)
C120.030 (2)0.020 (2)0.044 (3)−0.0058 (13)0.0117 (19)−0.0062 (15)
C130.043 (3)0.033 (3)0.041 (3)−0.0034 (16)0.007 (2)0.0032 (16)
C140.054 (3)0.045 (3)0.054 (3)−0.008 (2)0.031 (3)−0.001 (2)
C150.034 (2)0.043 (3)0.069 (3)−0.001 (2)0.021 (2)−0.004 (2)
C160.025 (2)0.038 (2)0.061 (3)−0.0005 (17)0.007 (2)−0.004 (2)
C170.032 (2)0.0246 (19)0.039 (2)0.0004 (16)0.0069 (17)−0.0022 (17)
O60.112 (3)0.067 (3)0.119 (4)−0.020 (2)−0.037 (3)0.005 (2)
O70.056 (2)0.075 (3)0.105 (3)0.0065 (18)0.002 (2)0.012 (2)

Geometric parameters (Å, °)

Pb1—N12.438 (3)C5—C61.477 (6)
Pb1—N22.499 (4)C6—C71.387 (7)
Pb1—O12.579 (3)C7—C81.371 (8)
Pb1—O2i2.623 (3)C7—H70.9300
Pb1—O1ii2.640 (2)C8—C91.362 (7)
S1—O31.442 (3)C8—H80.9300
S1—O41.457 (3)C9—C101.382 (6)
S1—O51.460 (3)C9—H90.9300
S1—C171.770 (4)C10—H100.9300
O1—C111.270 (4)C11—C121.503 (5)
O1—Pb1ii2.640 (2)C12—C131.397 (7)
O2—C111.250 (4)C12—C171.402 (6)
O2—Pb1iii2.623 (3)C13—C141.389 (7)
N1—C11.341 (5)C13—H130.9300
N1—C51.350 (5)C14—C151.380 (7)
N2—C101.331 (6)C14—H140.9300
N2—C61.343 (6)C15—C161.379 (6)
C1—C21.377 (5)C15—H150.9300
C1—H10.9300C16—C171.388 (5)
C2—C31.376 (5)C16—H160.9300
C2—H20.9300O6—H6A0.8533
C3—C41.369 (6)O6—H6B0.8532
C3—H30.9300O7—H7A0.8484
C4—C51.392 (5)O7—H7B0.8510
C4—H40.9300
N1—Pb1—N265.91 (11)C4—C5—C6123.1 (4)
N1—Pb1—O173.07 (9)N2—C6—C7120.3 (5)
N2—Pb1—O198.94 (8)N2—C6—C5116.4 (4)
N1—Pb1—O2i74.35 (9)C7—C6—C5123.3 (5)
N2—Pb1—O2i81.04 (9)C8—C7—C6119.3 (6)
O1—Pb1—O2i144.08 (8)C8—C7—H7120.4
N1—Pb1—O1ii85.01 (9)C6—C7—H7120.4
N2—Pb1—O1ii150.00 (10)C9—C8—C7120.2 (5)
O1—Pb1—O1ii63.85 (9)C9—C8—H8119.9
O2i—Pb1—O1ii98.72 (7)C7—C8—H8119.9
O3—S1—O4112.87 (19)C8—C9—C10118.2 (5)
O3—S1—O5114.6 (2)C8—C9—H9120.9
O4—S1—O5111.53 (19)C10—C9—H9120.9
O3—S1—C17104.97 (19)N2—C10—C9122.2 (5)
O4—S1—C17105.67 (19)N2—C10—H10118.9
O5—S1—C17106.38 (17)C9—C10—H10118.9
C11—O1—Pb1136.9 (2)O2—C11—O1123.2 (4)
C11—O1—Pb1ii105.1 (2)O2—C11—C12119.1 (3)
Pb1—O1—Pb1ii116.15 (9)O1—C11—C12117.6 (3)
C11—O2—Pb1iii132.2 (2)C13—C12—C17119.1 (4)
C1—N1—C5119.4 (3)C13—C12—C11117.8 (4)
C1—N1—Pb1119.2 (2)C17—C12—C11123.2 (4)
C5—N1—Pb1121.1 (3)C14—C13—C12120.1 (5)
C10—N2—C6119.8 (4)C14—C13—H13119.9
C10—N2—Pb1120.6 (3)C12—C13—H13119.9
C6—N2—Pb1119.4 (3)C15—C14—C13120.2 (4)
N1—C1—C2122.4 (4)C15—C14—H14119.9
N1—C1—H1118.8C13—C14—H14119.9
C2—C1—H1118.8C16—C15—C14120.3 (4)
C3—C2—C1118.5 (4)C16—C15—H15119.8
C3—C2—H2120.7C14—C15—H15119.8
C1—C2—H2120.7C15—C16—C17120.2 (4)
C4—C3—C2119.5 (4)C15—C16—H16119.9
C4—C3—H3120.3C17—C16—H16119.9
C2—C3—H3120.3C16—C17—C12120.0 (4)
C3—C4—C5120.0 (4)C16—C17—S1119.8 (3)
C3—C4—H4120.0C12—C17—S1120.1 (3)
C5—C4—H4120.0H6A—O6—H6B107.6
N1—C5—C4120.1 (4)H7A—O7—H7B109.7
N1—C5—C6116.7 (4)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.851.972.808 (5)168
O6—H6B···O7iv0.851.902.752 (6)178
O7—H7A···O40.851.952.791 (5)169
O7—H7B···O60.851.892.722 (6)167

Symmetry codes: (i) x, y+1, z; (iv) −x, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2537).

References

  • Bridgewater, B. & Parkin, G. (2000). Inorg. Chem. Commun.3, 534–536.
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (2003). Inorg. Chem. Commun.6, 546–548.
  • Foreman, M. R. S. J., Gelbrich, T., Hursthouse, M. B. & Plater, M. J. (2000). Inorg. Chem. Commun.3, 234–238.
  • Li, X., Wang, C. Y. & Hu, H. M. (2008). Inorg. Chem. Commun.11, 345–348.
  • Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem.40, 516–521. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, W. F., Zhang, L., Shafaei-Fallah, M. & Rothenberger, A. (2007). Z. Anorg. Allg. Chem.633, 2431–2434.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Taheri, S. & Morsali, A. (2006). J. Coord. Chem. 59, 363–369.
  • Wang, X. B. & Vittal, J. J. (2003). Inorg. Chem. Commun.6, 1074–1077.
  • Xiao, H.-P. (2006). Acta Cryst. E62, m1611–m1612.
  • Xiao, H.-P., Shi, Q. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m907–m909.
  • Xiao, H. P., Wang, J. G., Morsali, A., Zhang, W. B. & Li, X. H. (2008). J. Coord. Chem.61, 3703–3710.
  • Yin, Y.-B. & Yu, H.-X. (2007). Acta Cryst. E63, m2804.
  • Ying, S. M., Mao, J. G., Yang, B. P. & Sun, Z. M. (2003). Inorg. Chem. Commun.6, 1319–1322.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography