PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m244–m245.
Published online 2010 February 3. doi:  10.1107/S1600536810003284
PMCID: PMC2983599

Tetra­aqua­bis(3-fluoro­pyridine-4-carboxyl­ato-κN)zinc(II) dihydrate

Abstract

In the title compound, [Zn(C6H3FNO2)2(H2O)4]·2H2O, the ZnII atom is octa­hedrally coordinated in a ZnO4N2 environment by two 3-fluoro­pyridine-4-carboxyl­ate (3-fpy4-cbx) ligands and four water mol­ecules. The [Zn(3-fpy4-cbx)2(H2O)4] mol­ecules form a three-dimensional network through strong O—H(...)O and weak O—H(...)F hydrogen bonds between 3-fpy4-cbx and water mol­ecules. The crystal used for data collection was a twin, with the twin law corresponding to a 180° rotation about the real-space [001] axis. The major twin fraction refined to 0.795 (1).

Related literature

For metal-organic compounds with ligands containing both pyridyl and carboxyl­ate donor groups, see: Ellsworth et al. (2008 [triangle]); Erxleben (2003 [triangle]); Wang et al. (2006 [triangle]). For specific properties exhibited by related metal-organic compounds, see: Chen et al. (2009 [triangle]); Evans et al. (1999 [triangle]); Xie et al. (2008 [triangle]). For typical Zn—O and Zn—N bond distances in similar metal-organic compounds, see: Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m244-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H3FNO2)2(H2O)4]·2H2O
  • M r = 453.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m244-efi1.jpg
  • a = 6.6042 (4) Å
  • b = 19.1953 (10) Å
  • c = 6.8697 (4) Å
  • β = 99.225 (1)°
  • V = 859.61 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.51 mm−1
  • T = 294 K
  • 0.28 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (TWINABS; Bruker, 2003 [triangle]) T min = 0.890, T max = 1.000
  • 1734 measured reflections
  • 1740 independent reflections
  • 1605 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.065
  • S = 1.07
  • 1740 reflections
  • 149 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART-NT (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2003 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003284/jj2018sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003284/jj2018Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Science Foundation, awards CHE-0714555 and CHE-0714439, is gratefully acknowledged.

supplementary crystallographic information

Comment

Metal-organic compounds based on multifunctional ligands that contain both pyridyl and carboxylate donor atoms have been under study in part because of their diverse coordination modes and because they may exhibit useful properties (Ellsworth et al., 2008; Erxleben, 2003). Within this context, the 3-fluoropyridine-4-carboxylate ligand (3-fpy4-cbx), has attracted our interest as a potential component for the construction of these novel materials. A further motivation is that its nonfluorinated analogue, the isonicotinate ligand (ina), has been successfully utilized to generate metal-organic frameworks having the desirable properties alluded to above (Chen et al., 2009; Evans et al., 1999; Wang et al., 2006; Xie et al.,2008). Hence, we have deemed it worthwhile to also explore the coordinatingproperties of the related 3-fpy4-cbx ligand. This ligand has the additional possibility of C—F···H interactions, in contrast to ina. Herein, we wish to report the crystal structure of the title compound (I), which is a hydrogen bonded, three-dimensional framework.

The asymmetric unit of (I) consists of one-half of the [Zn(3-fpy4-cbx) 2 (H2O) 4] complex and a lattice water. The Zn(II) atom is located on an inversion center through which the other half of the molecular complex and another lattice water are generated from the asymmetric unit, thus completing the formula unit of (I) (Fig. 1).

The Zn(II) atom resides in a distorted ZnO4N2 octahedral environment. The equatorial positions are occupied by four O atoms from water molecules and the axial positions are occupied by N atoms from two 3-fpy4-cbx ligands. The Zn—O bond distances fall within the normal range of 2.0953 (14) - 2.1504 (13) Å (Wang et al., 2006), while the Zn—N distances are also normal at 2.1356 (13) Å (Wang et al., 2006). The 3-fpy4-cbx ligand is noticeably noncoplanar, with a dihedral angle of 34.2 (1)° between the mean planes of its carboxylate group and its pyridyl ring.

While the carboxylate group of 3-fpy4-cbx is not coordinated to Zn(II), it does assist in the assembly of the crystal structure by acting as hydrogen bond acceptors for both coordinated and lattice waters. The lattice waters are also involved in weak C—F···H2O hydrogen bonding with the 3-fpy4-cbx ligand. These interactions create a three-dimensional, hydrogen bonded network (Table 1, Fig. 2).

Experimental

An aqueous solution of sodium 3-fluoropyridine-4-carboxylate (25 ml, 2.0 mmol) was slowly added to an aqueous solution of zinc nitrate hexahydrate (25 ml, 1.0 mmol). Colorless crystals of the title compound were obtained after slow evaporation of the resulting solution under ambient conditions.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to carbon were placed in geometrically idealized positions and included as riding atoms: C—H = 0.93Å and with Uiso(H) = 1.20-2.12 Ueq(C). Oxygen-bound hydrogen atoms were located in difference Fourier maps and refined isotropically: O—H = 0.74 (2)—0.83 (3) Å and with Uiso(H) = 0.94-1.69 Ueq(O).

Figures

Fig. 1.
The molecular complex plus lattice waters with atom-labeling scheme of (I) showing 50% probability ellipsoids for nonhydrogen atoms. All H atoms except for those of water are omitted for clarity. Hydrogen bonds are represented by dashed lines. Primed ...
Fig. 2.
Wireframe polyhedral view of the crystal packing in (I) showing the hydrogen bonding scheme. Hydrogen atoms except for those of water have been omitted for clarity. Hydrogen bonds are represented by dashed lines.

Crystal data

[Zn(C6H3FNO2)2(H2O)4]·2H2OF(000) = 464
Mr = 453.65Dx = 1.753 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7697 reflections
a = 6.6042 (4) Åθ = 3.0–25.0°
b = 19.1953 (10) ŵ = 1.51 mm1
c = 6.8697 (4) ÅT = 294 K
β = 99.225 (1)°Block, colorless
V = 859.61 (8) Å30.28 × 0.22 × 0.16 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer1740 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (TWINABS; Bruker, 2003)h = −7→7
Tmin = 0.890, Tmax = 1.000k = 0→22
1734 measured reflectionsl = 0→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0427P)2 + 0.0969P] where P = (Fo2 + 2Fc2)/3
1740 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. R(int) value from TWINABS output.Cell_now output:Rotated from first domain by 179.9 degrees about reciprocal axis -0.159 - 0.001 1.000 and real axis -0.001 0.000 1.000Twin law to convert hkl from first to -1.000 0.000 - 0.317 this domain (SHELXL TWIN matrix): 0.001 - 1.000 0.000 - 0.002 0.000 1.000Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.50000.50000.02937 (12)
F10.31965 (16)0.76809 (5)0.48595 (19)0.0515 (3)
C10.4393 (3)0.65492 (9)0.4885 (2)0.0316 (4)
H10.30430.64030.48330.038*
C20.4808 (2)0.72491 (9)0.4902 (2)0.0299 (4)
C30.6762 (3)0.75042 (8)0.4933 (2)0.0280 (3)
C40.8278 (3)0.69967 (9)0.4946 (3)0.0366 (4)
H40.96280.71310.49320.044*
C50.7798 (3)0.63022 (9)0.4979 (3)0.0356 (4)
H50.88500.59780.50300.043*
C60.7287 (3)0.82734 (8)0.5010 (3)0.0340 (4)
N10.5870 (2)0.60704 (7)0.4940 (2)0.0297 (3)
O10.62449 (18)0.86516 (6)0.5953 (2)0.0468 (3)
O20.8725 (2)0.84601 (7)0.4177 (2)0.0504 (4)
O30.7470 (2)0.48608 (7)0.7293 (2)0.0401 (3)
H3A0.780 (4)0.4489 (14)0.789 (4)0.068 (8)*
H3B0.750 (3)0.5121 (11)0.809 (3)0.038 (6)*
O40.6983 (2)0.47337 (8)0.2917 (2)0.0413 (3)
H4A0.686 (4)0.4385 (13)0.230 (4)0.061 (8)*
H4B0.708 (4)0.5080 (12)0.223 (4)0.058 (8)*
O51.2370 (3)0.92014 (7)0.5293 (2)0.0419 (3)
H5A1.142 (4)0.8983 (14)0.505 (4)0.068 (9)*
H5B1.340 (4)0.8988 (11)0.553 (3)0.047 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03564 (18)0.01479 (16)0.03843 (19)−0.00133 (10)0.00817 (12)0.00005 (10)
F10.0358 (6)0.0230 (5)0.0947 (9)0.0041 (4)0.0078 (6)−0.0037 (5)
C10.0308 (8)0.0223 (9)0.0419 (10)−0.0026 (7)0.0064 (7)−0.0002 (7)
C20.0315 (9)0.0201 (9)0.0383 (9)0.0039 (6)0.0062 (7)−0.0004 (6)
C30.0341 (9)0.0207 (8)0.0296 (8)−0.0022 (6)0.0058 (7)0.0004 (6)
C40.0305 (8)0.0261 (8)0.0546 (11)−0.0031 (7)0.0114 (8)−0.0020 (8)
C50.0324 (9)0.0243 (8)0.0511 (10)0.0016 (7)0.0095 (8)−0.0011 (8)
C60.0363 (9)0.0222 (9)0.0418 (10)−0.0036 (7)0.0011 (8)0.0018 (7)
N10.0362 (8)0.0174 (7)0.0364 (8)−0.0009 (6)0.0083 (6)0.0001 (5)
O10.0422 (7)0.0245 (6)0.0735 (9)−0.0040 (5)0.0089 (7)−0.0150 (6)
O20.0570 (8)0.0287 (7)0.0701 (9)−0.0123 (6)0.0238 (7)0.0029 (6)
O30.0514 (8)0.0230 (7)0.0428 (8)0.0047 (6)−0.0020 (6)0.0005 (6)
O40.0538 (8)0.0267 (7)0.0481 (8)−0.0046 (6)0.0220 (6)−0.0036 (7)
O50.0431 (8)0.0273 (7)0.0546 (9)0.0025 (7)0.0059 (7)−0.0002 (6)

Geometric parameters (Å, °)

Zn1—O32.0953 (14)C4—C51.371 (2)
Zn1—O3i2.0953 (14)C4—H40.9300
Zn1—N1i2.1355 (13)C5—N11.345 (2)
Zn1—N12.1356 (13)C5—H50.9300
Zn1—O4i2.1504 (13)C6—O21.238 (2)
Zn1—O42.1504 (13)C6—O11.250 (2)
F1—C21.3457 (19)O3—H3A0.83 (3)
C1—N11.336 (2)O3—H3B0.74 (2)
C1—C21.371 (2)O4—H4A0.79 (3)
C1—H10.9300O4—H4B0.82 (2)
C2—C31.377 (2)O5—H5A0.75 (3)
C3—C41.396 (2)O5—H5B0.79 (2)
C3—C61.516 (2)
O3—Zn1—O3i180.0C2—C3—C6123.74 (15)
O3—Zn1—N1i92.42 (5)C4—C3—C6121.34 (15)
O3i—Zn1—N1i87.58 (5)C5—C4—C3120.75 (16)
O3—Zn1—N187.58 (5)C5—C4—H4119.6
O3i—Zn1—N192.42 (5)C3—C4—H4119.6
N1i—Zn1—N1180.00 (8)N1—C5—C4122.80 (15)
O3—Zn1—O4i90.79 (6)N1—C5—H5118.6
O3i—Zn1—O4i89.21 (6)C4—C5—H5118.6
N1i—Zn1—O4i91.25 (5)O2—C6—O1126.76 (16)
N1—Zn1—O4i88.76 (5)O2—C6—C3117.00 (15)
O3—Zn1—O489.21 (6)O1—C6—C3116.21 (15)
O3i—Zn1—O490.79 (6)C1—N1—C5117.22 (15)
N1i—Zn1—O488.76 (5)C1—N1—Zn1117.71 (11)
N1—Zn1—O491.24 (5)C5—N1—Zn1125.06 (11)
O4i—Zn1—O4180.0Zn1—O3—H3A126.1 (17)
N1—C1—C2121.99 (16)Zn1—O3—H3B113.1 (17)
N1—C1—H1119.0H3A—O3—H3B104 (2)
C2—C1—H1119.0Zn1—O4—H4A122.5 (18)
F1—C2—C1116.55 (14)Zn1—O4—H4B107.5 (18)
F1—C2—C3121.15 (15)H4A—O4—H4B113 (3)
C1—C2—C3122.29 (15)H5A—O5—H5B115 (3)
C2—C3—C4114.90 (15)
N1—C1—C2—F1−179.40 (14)C2—C1—N1—C5−1.1 (2)
N1—C1—C2—C31.4 (3)C2—C1—N1—Zn1178.06 (12)
F1—C2—C3—C4−179.08 (16)C4—C5—N1—C1−0.6 (3)
C1—C2—C3—C40.0 (2)C4—C5—N1—Zn1−179.72 (14)
F1—C2—C3—C62.6 (2)O3—Zn1—N1—C1−133.21 (12)
C1—C2—C3—C6−178.23 (16)O3i—Zn1—N1—C146.79 (12)
C2—C3—C4—C5−1.7 (2)O4i—Zn1—N1—C1−42.37 (12)
C6—C3—C4—C5176.61 (16)O4—Zn1—N1—C1137.63 (12)
C3—C4—C5—N12.1 (3)O3—Zn1—N1—C545.92 (14)
C2—C3—C6—O2−148.22 (17)O3i—Zn1—N1—C5−134.08 (14)
C4—C3—C6—O233.6 (2)O4i—Zn1—N1—C5136.77 (14)
C2—C3—C6—O133.4 (2)O4—Zn1—N1—C5−43.23 (14)
C4—C3—C6—O1−144.78 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.83 (3)1.86 (3)2.6892 (18)174 (2)
O3—H3B···O5iii0.74 (2)2.01 (2)2.745 (2)176 (2)
O4—H4A···O2iv0.79 (3)2.05 (3)2.837 (2)174 (2)
O4—H4B···O5v0.82 (2)1.95 (3)2.7643 (19)171 (3)
O5—H5A···O20.75 (3)2.05 (3)2.796 (2)174 (3)
O5—H5B···O1vi0.79 (2)1.96 (3)2.738 (2)167 (2)
O5—H5B···F1vi0.79 (2)2.55 (2)2.9929 (17)117.2 (18)

Symmetry codes: (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2018).

References

  • Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART-NT, SAINT-Plus-NT and TWINABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, W.-T., Liu, J.-H., Ying, S.-M., Liu, D.-S. & Kuang, H.-M. (2009). Inorg. Chem. Commun.12, 811–814.
  • Ellsworth, J. M., Smith, M. D. & zur Loye, H.-C. (2008). Solid State Sci.10, 1822–1834.
  • Erxleben, A. (2003). Coord. Chem. Rev.246, 203–228.
  • Evans, O. R., Xiong, R.-G., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed.38, 536–538.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem.179, 1536–1544.
  • Xie, Y.-M., Chen, W.-T. & Wu, J.-H. (2008). J. Solid State Chem.181, 1853–1858.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography