PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o647–o648.
Published online 2010 February 17. doi:  10.1107/S1600536810005799
PMCID: PMC2983592

meso-1-{[2-(Propyl-1-sulfin­yl)eth­yl]sulfin­yl}propane

Abstract

The title mol­ecule, C8H18O2S2, is disposed about a centre of inversion implying an anti-disposition of the sulfinyl-O atoms; the terminal n-propyl group has an extended conformation. The crystal packing is dominated by C—H(...)O inter­actions, which lead to the formation of supra­molecular arrays in the bc plane.

Related literature

For the structures of the stereoisomers of RS(=O)CH2CH2S(=O)R, see: Pelizzi et al. (1976 [triangle]); Svinning et al. (1976 [triangle]); Chu & Madden (1978 [triangle]); Ternay et al. (1978 [triangle]); Cattalini et al. (1979 [triangle]); Li et al. (2002 [triangle], 2004 [triangle]). For the preparation and separation of the steroisomers of the title compound, see: Hull & Bargar (1975 [triangle]); Li et al. (2005 [triangle]). For information on the use of bis-sulfoxides as a ligand, see: de Souza et al. (1995 [triangle], 1997 [triangle]); Huang et al. (1986 [triangle]); Huang & Zhang (1986 [triangle]); Filgueiras & Marques (1985 [triangle]); Filgueiras et al. (1982 [triangle]); Bu et al. (2002 [triangle]); Li et al. (2005 [triangle]); Yapp et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o647-scheme1.jpg

Experimental

Crystal data

  • C8H18O2S2
  • M r = 210.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o647-efi1.jpg
  • a = 11.9794 (9) Å
  • b = 5.2190 (3) Å
  • c = 8.7618 (5) Å
  • β = 97.191 (5)°
  • V = 543.48 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 120 K
  • 1.1 × 0.6 × 0.12 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.527, T max = 0.746
  • 5666 measured reflections
  • 1239 independent reflections
  • 1167 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.06
  • 1239 reflections
  • 56 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks general, I. DOI: 10.1107/S1600536810005799/ez2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005799/ez2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

Bis-sulfoxides such as the title compound, (I), have found use as ligands (de Souza et al., 1995, 1997; Huang et al., 1986; Huang & Zhang, 1986; Filgueiras & Marques, 1985; Filgueiras et al., 1982; Bu et al., 2002; Li et al., 2005; Yapp et al., 1997). Details on the preparation and the separation of steroisomers of (I) are available in the literature (Hull & Bargar 1975; Li et al. 2005). Crystallography shows the molecule of (I) is disposed about a centre of inversion, Fig. 1, and the n-propyl chain has an extended conformation as seen in the value of the S1–C1–C2–C3 torsion angle of S1–C1–C2–C3 of -179.93 (11) °. The anti-disposition of the sulfinyl-O atoms allow for the optimisation of C–H···O interactions in the crystal structure, Table 1. Thus, each sulfinyl-O1 associates with three methylene-H atoms to form a supramolecular array in the bc plane, Fig. 2, which stack along the a axis, Fig. 3.

The central core in (I), including its disposition about a centre of inversion, resembles that found in each of the reported meso-RS(═ O)CH2CH2S(═O)R structures, where R = Me (Svinning et al., 1976), Et (Li et al., 2004), Ph (Pelizzi, et al. 1976; Ternay et al. 1978; Cattalini et al., 1979), benzyl (Li et al. 2002), and mesityl (Chu & Madden, 1978), but not in their homo chiral stereoisomers where R = Ph (Ternay et al. 1978; Cattalini et al., 1979) and mesityl (Chu & Madden, 1978).

Experimental

Compound (I) was prepared by a published method (Li et al., 2005) and had spectral and other parameters in agreement with published values (Li et al., 2005; Yapp et al., 1997). M.pt. 434-435 K. Lit. value 434-435 K (Hull & Bargar, 1975; Li et al., 2005). The sample used in the crystallographic study was grown from an ethanol solution of (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
A view of a supramolecular array in (I) in the bc plane. The C–H···O interactions are shown as blue dashed lines. Colour code: S, yellow; O, red; C, grey; and H, green.
Fig. 3.
View in projection down the c axis of the unit cell contents in (I). Colour code: S, yellow; O, red; C, grey; and H, green.

Crystal data

C8H18O2S2F(000) = 228
Mr = 210.34Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19160 reflections
a = 11.9794 (9) Åθ = 2.9–27.5°
b = 5.2190 (3) ŵ = 0.45 mm1
c = 8.7618 (5) ÅT = 120 K
β = 97.191 (5)°Plate, colourless
V = 543.48 (6) Å31.1 × 0.6 × 0.12 mm
Z = 2

Data collection

Nonius KappaCCD area-detector diffractometer1239 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1167 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
[var phi] and ω scansh = −12→15
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −6→6
Tmin = 0.527, Tmax = 0.746l = −11→11
5666 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0344P)2 + 0.4193P] where P = (Fo2 + 2Fc2)/3
1239 reflections(Δ/σ)max = 0.001
56 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.66819 (3)−0.09909 (6)0.45405 (4)0.01305 (14)
O10.64458 (10)−0.37397 (19)0.40786 (13)0.0187 (3)
C10.72083 (12)0.0560 (3)0.29375 (16)0.0149 (3)
H1A0.67050.01920.19780.018*
H1B0.72280.24380.30970.018*
C20.83896 (12)−0.0425 (3)0.27975 (17)0.0191 (3)
H2A0.8363−0.23050.26460.023*
H2B0.8885−0.00650.37650.023*
C30.88818 (14)0.0828 (3)0.14553 (19)0.0246 (4)
H3A0.83980.04550.04940.037*
H3B0.96380.01470.13970.037*
H3C0.89250.26860.16140.037*
C40.53341 (12)0.0583 (3)0.44006 (15)0.0144 (3)
H4A0.54380.24430.45890.017*
H4B0.49240.03430.33580.017*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0150 (2)0.0110 (2)0.0135 (2)0.00060 (11)0.00307 (13)0.00048 (11)
O10.0238 (6)0.0087 (5)0.0244 (6)0.0012 (4)0.0066 (4)0.0004 (4)
C10.0176 (7)0.0133 (6)0.0147 (6)−0.0002 (5)0.0048 (5)0.0007 (5)
C20.0179 (7)0.0221 (7)0.0181 (7)0.0014 (6)0.0057 (5)0.0005 (6)
C30.0210 (8)0.0325 (9)0.0217 (7)−0.0031 (6)0.0078 (6)0.0010 (6)
C40.0167 (7)0.0111 (6)0.0162 (6)0.0018 (5)0.0049 (5)0.0013 (5)

Geometric parameters (Å, °)

S1—O11.5077 (10)C2—H2B0.9900
S1—C41.8018 (14)C3—H3A0.9800
S1—C11.8021 (14)C3—H3B0.9800
C1—C21.525 (2)C3—H3C0.9800
C1—H1A0.9900C4—C4i1.525 (3)
C1—H1B0.9900C4—H4A0.9900
C2—C31.527 (2)C4—H4B0.9900
C2—H2A0.9900
O1—S1—C4106.20 (7)H2A—C2—H2B107.9
O1—S1—C1106.88 (7)C2—C3—H3A109.5
C4—S1—C198.06 (6)C2—C3—H3B109.5
C2—C1—S1109.27 (10)H3A—C3—H3B109.5
C2—C1—H1A109.8C2—C3—H3C109.5
S1—C1—H1A109.8H3A—C3—H3C109.5
C2—C1—H1B109.8H3B—C3—H3C109.5
S1—C1—H1B109.8C4i—C4—S1108.34 (13)
H1A—C1—H1B108.3C4i—C4—H4A110.0
C1—C2—C3111.67 (13)S1—C4—H4A110.0
C1—C2—H2A109.3C4i—C4—H4B110.0
C3—C2—H2A109.3S1—C4—H4B110.0
C1—C2—H2B109.3H4A—C4—H4B108.4
C3—C2—H2B109.3
O1—S1—C1—C2−71.04 (11)O1—S1—C4—C4i65.40 (14)
C4—S1—C1—C2179.23 (10)C1—S1—C4—C4i175.68 (13)
S1—C1—C2—C3−179.93 (11)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1b···O1ii0.992.413.3035 (19)150
C4—H4a···O1ii0.992.403.2751 (19)147
C4—H4b···O1iii0.992.573.5124 (18)159

Symmetry codes: (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2201).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bu, X.-H., Weng, W., Li, J.-R., Chen, W. & Zhang, R.-H. (2002). Inorg. Chem 41, 413–415. [PubMed]
  • Cattalini, L., Michelon, G., Marangoni, G. & Pelizzi, G. (1979). J Chem Soc Dalton Trans pp. 96–101.
  • Chu, S. S. C. & Madden, J. (1978). Acta Cryst. B34, 841–845.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Filgueiras, C. A. L., Celso, C., Marques, E. V. & Johnson, B. F. G. (1982). Inorg. Chim. Acta, 59, 71–74.
  • Filgueiras, C. A. L. & Marques, E. V. (1985). Transition Met. Chem 10, 241–243.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Huang, Z. & Zhang, Z. (1986). Wuji Huaxu Xuebaoe, 2, 64–71.
  • Huang, Z., Zhang, R., Wang, J. & Zhang, Z. (1986). Wuji Huaxue Xuebaoe, 2, 54–59.
  • Hull, C. M. & Bargar, T. W. (1975). J. Org. Chem 40, 3152–3154.
  • Li, J.-R., Bu, X.-H. & Zhang, R.-H. (2004). Inorg Chem 43, 237–244. [PubMed]
  • Li, J.-R., Bu, X.-H., Zhang, R.-H. & Ribas, J. (2005). Cryst. Growth Des 5, 1919–1932.
  • Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, o911–o912.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pelizzi, G., Michelon, G. & Bonivento, M. (1976). Cryst Struct Commun 5, 617–620.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Souza, G. F. de, Filgueiras, C. A. L., Abras, A., Carvalho, C. C., Francisco, R. H. P. & Gambardella, M. T. Do. P. (1995). An. Ass. Bras. Quim 44, 42–46.
  • Souza, G. F. de, Filgueiras, C. A. L., Hitchcock, P. B. & Nixon, J. F. (1997). Inorg. Chim. Acta, 261, 221–225.
  • Svinning, T., Mo, F. & Bruun, T. (1976). Acta Cryst. B32, 759–764.
  • Ternay, A. L. Jr, Lin, J., Sutliff, T., Chu, S. S. C. & Chung, B. (1978). J Org Chem 43, 3024–3031.
  • Westrip, S. P. (2010). publCIF In preparation.
  • Yapp, D. T. T., Rettig, S. J., James, B. R. & Skov, K. A. (1997). Inorg. Chem 36, 5635–5641.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography