PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o594.
Published online 2010 February 13. doi:  10.1107/S1600536810004769
PMCID: PMC2983589

N-(2,5-Dichloro­phen­yl)benzene­sulfonamide

Abstract

In the title compound, C12H9Cl2NO2S, the conformation of the N—H bond is syn to the 2-chloro group and anti to the 3-chloro group of the aniline benzene ring. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 66.4 (2)°. The two rings form a dihedral angle of 73.3 (1)° and an intra­molecular N—H(...)Cl hydrogen bond occurs. The crystal structure features chains linked by N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005 [triangle]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009 [triangle], 2010 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o594-scheme1.jpg

Experimental

Crystal data

  • C12H9Cl2NO2S
  • M r = 302.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o594-efi1.jpg
  • a = 9.595 (1) Å
  • b = 14.188 (2) Å
  • c = 10.424 (1) Å
  • β = 114.42 (2)°
  • V = 1292.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 299 K
  • 0.44 × 0.40 × 0.32 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.761, T max = 0.818
  • 5199 measured reflections
  • 2638 independent reflections
  • 2225 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.086
  • S = 1.05
  • 2638 reflections
  • 167 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004769/fl2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004769/fl2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009; 2010), the structure of (I) has been determined. The conformation of the N—H bond is syn to the 2-chloro group and anti to the 3-chloro group in the aniline benzene ring (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 66.4 (2)°, compared to the values of -62.1 (3)° and 60.7 (3)°, in the two molecules of N-(2,4-dichlorophenyl)benzenesulfonamide (II), -68.1 (3)° in N-(3,5-dichlorophenyl)benzenesulfonamide (III) (Gowda et al., 2010) and 62.7 (2)° in N-(2,5-dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 73.3 (1)°, compared to the values of 70.8 (1)° (molecule 1) and 74.8 (1)° (molecule 2) in (II), 57.0 (1)° in (III) and 40.4 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II)-(IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

An intramolecular N—H···Cl hydrogen bond is observed. The crystal packing of molecules in (I) is via N—H···O(S) hydrogen bonds (Table 1, Fig. 2).

Experimental

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,5-dichloroaniline in the stoichiometric amounts and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid (I) was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The rod like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C12H9Cl2NO2SF(000) = 616
Mr = 302.16Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2765 reflections
a = 9.595 (1) Åθ = 2.7–27.8°
b = 14.188 (2) ŵ = 0.66 mm1
c = 10.424 (1) ÅT = 299 K
β = 114.42 (2)°Prism, colourless
V = 1292.1 (3) Å30.44 × 0.40 × 0.32 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector2638 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
graphiteRint = 0.010
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −11→11
Tmin = 0.761, Tmax = 0.818k = −13→17
5199 measured reflectionsl = −7→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4815P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2638 reflectionsΔρmax = 0.23 e Å3
167 parametersΔρmin = −0.34 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0316 (18)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.10881 (19)0.57873 (12)0.71058 (18)0.0342 (4)
C2−0.0940 (2)0.61982 (15)0.8359 (2)0.0482 (5)
H2−0.02550.59570.92170.058*
C3−0.1826 (3)0.69707 (18)0.8311 (3)0.0665 (7)
H3−0.17320.72590.91450.080*
C4−0.2852 (3)0.73206 (17)0.7038 (3)0.0690 (7)
H4−0.34520.78400.70160.083*
C5−0.2991 (3)0.69043 (18)0.5800 (3)0.0675 (7)
H5−0.36880.71430.49430.081*
C6−0.2105 (2)0.61368 (15)0.5821 (2)0.0501 (5)
H6−0.21880.58580.49840.060*
C70.27503 (19)0.56534 (12)0.85564 (18)0.0338 (4)
C80.3535 (2)0.64497 (13)0.8424 (2)0.0403 (4)
C90.4606 (2)0.68914 (15)0.9591 (2)0.0515 (5)
H90.51290.74140.94790.062*
C100.4906 (2)0.65644 (16)1.0922 (2)0.0528 (5)
H100.56210.68651.17130.063*
C110.4128 (2)0.57828 (14)1.10589 (19)0.0429 (4)
C120.3074 (2)0.53198 (13)0.99013 (18)0.0386 (4)
H120.25810.47851.00220.046*
N10.17095 (17)0.51827 (11)0.73345 (15)0.0363 (3)
H1N0.166 (2)0.5403 (13)0.6564 (14)0.044*
O1−0.05974 (16)0.43413 (9)0.58100 (13)0.0443 (3)
O20.02450 (15)0.42616 (9)0.83833 (13)0.0462 (3)
Cl10.31855 (6)0.68832 (4)0.67634 (6)0.05849 (18)
Cl20.44864 (7)0.53545 (5)1.27273 (5)0.06258 (19)
S10.00256 (5)0.47941 (3)0.71548 (4)0.03304 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0319 (9)0.0366 (9)0.0350 (9)−0.0051 (7)0.0147 (7)−0.0037 (7)
C20.0452 (11)0.0609 (13)0.0406 (10)−0.0044 (9)0.0200 (9)−0.0115 (9)
C30.0580 (14)0.0735 (16)0.0783 (17)−0.0084 (12)0.0385 (13)−0.0330 (14)
C40.0510 (13)0.0540 (14)0.109 (2)0.0053 (11)0.0400 (14)−0.0137 (14)
C50.0563 (14)0.0647 (15)0.0737 (16)0.0185 (12)0.0190 (12)0.0078 (13)
C60.0473 (11)0.0551 (12)0.0418 (11)0.0082 (9)0.0125 (9)−0.0003 (9)
C70.0272 (8)0.0366 (9)0.0352 (9)0.0026 (7)0.0106 (7)−0.0005 (7)
C80.0344 (9)0.0397 (10)0.0434 (10)0.0020 (7)0.0126 (8)0.0064 (8)
C90.0441 (11)0.0457 (11)0.0587 (13)−0.0129 (9)0.0152 (9)−0.0018 (9)
C100.0427 (11)0.0575 (13)0.0477 (11)−0.0115 (9)0.0083 (9)−0.0106 (10)
C110.0342 (9)0.0540 (12)0.0351 (9)0.0011 (8)0.0090 (7)−0.0019 (8)
C120.0333 (9)0.0421 (10)0.0376 (9)−0.0028 (7)0.0118 (8)0.0004 (8)
N10.0340 (8)0.0450 (9)0.0306 (7)−0.0030 (6)0.0140 (6)−0.0007 (6)
O10.0510 (8)0.0428 (7)0.0338 (7)−0.0064 (6)0.0123 (6)−0.0099 (5)
O20.0507 (8)0.0454 (7)0.0357 (7)−0.0107 (6)0.0112 (6)0.0078 (6)
Cl10.0530 (3)0.0621 (3)0.0535 (3)−0.0064 (2)0.0152 (2)0.0205 (3)
Cl20.0564 (3)0.0871 (4)0.0342 (3)−0.0090 (3)0.0085 (2)0.0007 (3)
S10.0356 (2)0.0331 (2)0.0272 (2)−0.00569 (17)0.00974 (17)−0.00172 (16)

Geometric parameters (Å, °)

C1—C61.383 (3)C7—N11.419 (2)
C1—C21.383 (2)C8—C91.377 (3)
C1—S11.7565 (18)C8—Cl11.7343 (19)
C2—C31.375 (3)C9—C101.375 (3)
C2—H20.9300C9—H90.9300
C3—C41.377 (4)C10—C111.377 (3)
C3—H30.9300C10—H100.9300
C4—C51.375 (4)C11—C121.379 (2)
C4—H40.9300C11—Cl21.737 (2)
C5—C61.376 (3)C12—H120.9300
C5—H50.9300N1—S11.6430 (15)
C6—H60.9300N1—H1N0.844 (9)
C7—C121.388 (2)O1—S11.4292 (13)
C7—C81.396 (2)O2—S11.4254 (13)
C6—C1—C2121.31 (18)C7—C8—Cl1119.74 (14)
C6—C1—S1119.54 (14)C10—C9—C8120.44 (19)
C2—C1—S1119.15 (15)C10—C9—H9119.8
C3—C2—C1118.8 (2)C8—C9—H9119.8
C3—C2—H2120.6C9—C10—C11118.67 (18)
C1—C2—H2120.6C9—C10—H10120.7
C2—C3—C4120.4 (2)C11—C10—H10120.7
C2—C3—H3119.8C10—C11—C12121.72 (18)
C4—C3—H3119.8C10—C11—Cl2119.63 (15)
C5—C4—C3120.2 (2)C12—C11—Cl2118.65 (15)
C5—C4—H4119.9C11—C12—C7119.90 (17)
C3—C4—H4119.9C11—C12—H12120.1
C4—C5—C6120.4 (2)C7—C12—H12120.1
C4—C5—H5119.8C7—N1—S1123.65 (12)
C6—C5—H5119.8C7—N1—H1N115.0 (15)
C5—C6—C1118.9 (2)S1—N1—H1N110.3 (15)
C5—C6—H6120.6O2—S1—O1119.31 (8)
C1—C6—H6120.6O2—S1—N1107.60 (8)
C12—C7—C8118.11 (16)O1—S1—N1104.80 (8)
C12—C7—N1121.79 (16)O2—S1—C1108.27 (8)
C8—C7—N1120.03 (15)O1—S1—C1109.23 (8)
C9—C8—C7121.14 (18)N1—S1—C1106.97 (8)
C9—C8—Cl1119.11 (15)
C6—C1—C2—C3−0.1 (3)C9—C10—C11—Cl2179.98 (17)
S1—C1—C2—C3−179.45 (16)C10—C11—C12—C7−1.5 (3)
C1—C2—C3—C40.7 (3)Cl2—C11—C12—C7179.16 (13)
C2—C3—C4—C5−0.5 (4)C8—C7—C12—C111.0 (3)
C3—C4—C5—C6−0.2 (4)N1—C7—C12—C11178.02 (17)
C4—C5—C6—C10.7 (4)C12—C7—N1—S145.9 (2)
C2—C1—C6—C5−0.5 (3)C8—C7—N1—S1−137.14 (15)
S1—C1—C6—C5178.75 (18)C7—N1—S1—O2−49.78 (17)
C12—C7—C8—C90.3 (3)C7—N1—S1—O1−177.73 (14)
N1—C7—C8—C9−176.78 (18)C7—N1—S1—C166.36 (16)
C12—C7—C8—Cl1179.19 (13)C6—C1—S1—O2−146.50 (15)
N1—C7—C8—Cl12.1 (2)C2—C1—S1—O232.81 (16)
C7—C8—C9—C10−1.2 (3)C6—C1—S1—O1−15.12 (18)
Cl1—C8—C9—C10179.95 (17)C2—C1—S1—O1164.19 (14)
C8—C9—C10—C110.7 (3)C6—C1—S1—N197.79 (16)
C9—C10—C11—C120.6 (3)C2—C1—S1—N1−82.90 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (1)2.28 (1)3.074 (2)156 (2)
N1—H1N···Cl10.84 (1)2.52 (2)2.9795 (16)115 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2289).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o229. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography