PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o531.
Published online 2010 February 6. doi:  10.1107/S1600536810004009
PMCID: PMC2983588

2-[5-(Benzo[d]thia­zol-2-yl)thio­phen-2-yl]benzo[d]thia­zole

Abstract

The structure of the title compound, C18H10N2S3, consists of a central thio­phene ring and two terminal thia­zole rings. The two S atoms of the thia­zole rings are trans to the thio­phene S atom sulfur. The thia­zole rings are approximately coplanar with the thio­phene ring, with dihedral angles of 6.23 (11) and 4.81 (11)° between them. In the crystal, zigzag chains are formed along [010] by weak C—H(...)N inter­actions.

Related literature

For the synthesis of thio­phene derivatives, see: Kaleta et al. (2006 [triangle]); Minetto et al. (2005 [triangle]); Bayh et al. (2005 [triangle]). For their conformation, see: Alberti et al. (1986 [triangle]); Hagen (1986 [triangle]); Salman (1982 [triangle]) and for their applications, see: Seed et al. (2003 [triangle]); Cheylan et al. (2006 [triangle]); Karimian (2009 [triangle]); Kiryanov et al. (2001 [triangle]); Shi et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o531-scheme1.jpg

Experimental

Crystal data

  • C18H10N2S3
  • M r = 350.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o531-efi1.jpg
  • a = 15.7297 (14) Å
  • b = 8.2396 (5) Å
  • c = 12.8160 (12) Å
  • β = 112.872 (11)°
  • V = 1530.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 200 K
  • 0.34 × 0.15 × 0.01 mm

Data collection

  • Oxford XCalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.839, T max = 1.000
  • 5789 measured reflections
  • 3086 independent reflections
  • 1452 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.051
  • S = 0.72
  • 3086 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]) and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004009/ez2199sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004009/ez2199Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

Derivatives of thiophene have shown promise in photovoltaic (Cheylan et al., 2006), liquid crystal (Kiryanov et al. 2001) and therapeutic applications (Seed et al., 2003). On the other hand, thiazole derivatives have been evaluated for biological activity (Karimian, 2009), especially against certain breast carcinoma cell lines (Shi et al. 1996).

In the present work the structure of 2-(5-benzo[d]thiazol-2-yl)thiophen-2-yl)benzo[d]thiazole has been determined to explore its suitability as a tridentate ligand for various metal ions.

The structure consists of a central thiophenyl ring and two terminal thiazolyl rings, with the two sulfur atoms of the latter rings in trans positions to the thiophenyl sulfur atom (see Fig. 1). The thiazolyl rings with S1 and S3 are approximately coplanar with the thiophenyl ring, with dihedral angles of 6.23 (11)° and 4.81 (11)° respectively. The dihedral angle between the two thiazolyl rings is 10.39 (8)°.

The bonding parameters illustrate that C8—C9 and C10—C11 bonds in the thiophenyl ring are localized double bonds (1.354 (5) and 1.358 (4) Å respectively), as are the N1—C7 and N2—C12 bonds (1.286 (4) and 1.308 (4) Å respectively).

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van der Waals radii, the molecules are linked by weak interactions of the type C16—H16···N1, which lead to the formation of zig-zag-chains along [010] (see Fig. 2). The shortest distance in the parallel stacking of the molecules is 3.6371 (17) Å, observed for the planes through the thiophenyl ring and the phenyl ring (C13 to C18) of a neighboring molecule.

Experimental

All chemicals used (reagent grade) were commercially available. A mass of 0.281 g (0.0020 mol) of 2,5-thiophenedicarboxaldehyde was dissolved in methanol (20 cm3), and 0.502 g (0.0040 mol) of 2-aminothiophenol was added with stirring. The mixture was heated under reflux for an hour, then cooled to room temperature and filtered. After standing at 0°C for 24 h, a yellow precipitate was collected. Recrystallization from ethanol gave yellow needles (0.378 g, 54 %), with the formulation C18H10N2S3 and suitable for X-ray analysis. M.p. 203–206 °C.

Refinement

The C-bound H atoms were positioned geometrically (0.95 Å for CH) and treated as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probablility level).
Fig. 2.
The zig-zag-chains established by weak interactions of the type C–H···N.

Crystal data

C18H10N2S3F(000) = 720
Mr = 350.48Dx = 1.521 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.7297 (14) ÅCell parameters from 1275 reflections
b = 8.2396 (5) Åθ = 4.2–26.2°
c = 12.8160 (12) ŵ = 0.48 mm1
β = 112.872 (11)°T = 200 K
V = 1530.4 (2) Å3Needles, yellow
Z = 40.34 × 0.15 × 0.01 mm

Data collection

Oxford XCalibur diffractometer3086 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
graphiteRint = 0.053
Detector resolution: 15.9809 pixels mm-1θmax = 26.3°, θmin = 4.2°
ω scansh = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→10
Tmin = 0.839, Tmax = 1.000l = −9→15
5789 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.72w = 1/[σ2(Fo2) + (0.006P)2] where P = (Fo2 + 2Fc2)/3
3086 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.30 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.19188 (5)−0.01268 (9)0.55789 (7)0.0372 (2)
S20.40390 (5)0.14749 (8)0.43819 (7)0.0294 (2)
S30.65397 (5)0.41064 (8)0.64495 (7)0.0351 (2)
N10.22730 (15)−0.0478 (2)0.3780 (2)0.0306 (7)
N20.57525 (15)0.3239 (2)0.4337 (2)0.0258 (6)
C10.11335 (19)−0.1200 (3)0.4461 (3)0.0294 (8)
C20.1446 (2)−0.1266 (3)0.3573 (3)0.0299 (8)
C30.0918 (2)−0.2090 (3)0.2584 (3)0.0393 (9)
H30.1119−0.21560.19750.047*
C40.0108 (2)−0.2802 (3)0.2499 (3)0.0421 (9)
H4−0.0250−0.33690.18250.051*
C5−0.0200 (2)−0.2717 (3)0.3369 (3)0.0436 (9)
H5−0.0766−0.32200.32840.052*
C60.0300 (2)−0.1917 (3)0.4350 (3)0.0383 (9)
H60.0084−0.18510.49460.046*
C70.25959 (18)0.0157 (3)0.4775 (3)0.0252 (7)
C80.34453 (18)0.1056 (3)0.5237 (3)0.0233 (7)
C90.38812 (19)0.1676 (3)0.6290 (3)0.0321 (8)
H90.36560.15680.68750.039*
C100.46999 (19)0.2493 (3)0.6426 (2)0.0292 (8)
H100.50910.29880.71150.035*
C110.48737 (18)0.2503 (3)0.5468 (2)0.0242 (7)
C120.56531 (19)0.3212 (3)0.5304 (3)0.0252 (8)
C130.70982 (19)0.4587 (3)0.5569 (3)0.0278 (8)
C140.6576 (2)0.4025 (3)0.4477 (3)0.0280 (8)
C150.6891 (2)0.4295 (3)0.3612 (3)0.0372 (8)
H150.65460.39290.28620.045*
C160.7711 (2)0.5105 (3)0.3873 (3)0.0401 (9)
H160.79250.53130.32870.048*
C170.8235 (2)0.5627 (3)0.4957 (3)0.0392 (9)
H170.88060.61630.51090.047*
C180.79350 (19)0.5377 (3)0.5819 (3)0.0370 (9)
H180.82910.57350.65670.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0338 (5)0.0475 (5)0.0327 (6)−0.0084 (4)0.0156 (4)−0.0013 (4)
S20.0278 (4)0.0338 (4)0.0285 (5)−0.0019 (4)0.0131 (4)−0.0010 (4)
S30.0355 (5)0.0414 (5)0.0292 (6)−0.0081 (4)0.0136 (4)−0.0030 (4)
N10.0267 (16)0.0288 (16)0.039 (2)−0.0070 (12)0.0154 (14)−0.0019 (12)
N20.0235 (14)0.0293 (14)0.0270 (18)−0.0032 (12)0.0124 (13)0.0000 (12)
C10.0301 (18)0.0262 (18)0.031 (2)0.0001 (15)0.0110 (16)0.0036 (14)
C20.0319 (19)0.0250 (18)0.031 (2)0.0034 (15)0.0107 (17)0.0043 (15)
C30.046 (2)0.045 (2)0.032 (2)−0.0112 (17)0.0211 (19)−0.0050 (17)
C40.037 (2)0.047 (2)0.037 (3)−0.0182 (17)0.0080 (19)−0.0047 (17)
C50.035 (2)0.048 (2)0.048 (3)−0.0127 (17)0.016 (2)0.0046 (19)
C60.033 (2)0.046 (2)0.039 (3)−0.0050 (17)0.0173 (19)0.0065 (18)
C70.0272 (19)0.0201 (16)0.031 (2)0.0017 (15)0.0142 (17)0.0023 (16)
C80.0214 (17)0.0226 (16)0.028 (2)−0.0018 (14)0.0125 (16)0.0004 (15)
C90.0338 (19)0.0379 (18)0.030 (2)−0.0021 (15)0.0182 (18)0.0067 (16)
C100.0250 (18)0.0350 (18)0.025 (2)−0.0007 (15)0.0066 (16)−0.0008 (15)
C110.0260 (18)0.0194 (16)0.025 (2)0.0006 (14)0.0079 (17)0.0001 (14)
C120.0295 (19)0.0170 (16)0.029 (2)0.0018 (14)0.0107 (17)0.0010 (14)
C130.0241 (18)0.0270 (18)0.036 (2)0.0003 (14)0.0154 (17)0.0032 (15)
C140.0318 (19)0.0253 (17)0.029 (2)0.0035 (15)0.0148 (17)0.0016 (15)
C150.045 (2)0.0423 (19)0.029 (2)−0.0049 (17)0.0191 (18)−0.0056 (16)
C160.041 (2)0.0410 (19)0.051 (3)−0.0025 (17)0.033 (2)0.0007 (19)
C170.031 (2)0.0324 (18)0.056 (3)−0.0053 (16)0.020 (2)−0.0017 (18)
C180.0306 (19)0.039 (2)0.033 (2)−0.0048 (15)0.0033 (17)−0.0002 (16)

Geometric parameters (Å, °)

S1—C11.728 (3)C6—H60.9500
S1—C71.761 (3)C7—C81.438 (3)
S2—C111.720 (3)C8—C91.353 (3)
S2—C81.729 (3)C9—C101.403 (3)
S3—C131.725 (3)C9—H90.9500
S3—C121.747 (3)C10—C111.357 (3)
N1—C71.286 (3)C10—H100.9500
N1—C21.384 (3)C11—C121.445 (3)
N2—C121.308 (3)C13—C181.389 (3)
N2—C141.397 (3)C13—C141.398 (4)
C1—C61.394 (3)C14—C151.396 (4)
C1—C21.404 (4)C15—C161.374 (3)
C2—C31.392 (3)C15—H150.9500
C3—C41.368 (4)C16—C171.380 (4)
C3—H30.9500C16—H160.9500
C4—C51.379 (4)C17—C181.375 (4)
C4—H40.9500C17—H170.9500
C5—C61.366 (4)C18—H180.9500
C5—H50.9500
?···??
C1—S1—C789.01 (14)C8—C9—H9123.5
C11—S2—C890.91 (14)C10—C9—H9123.5
C13—S3—C1289.42 (14)C11—C10—C9112.8 (3)
C7—N1—C2111.1 (3)C11—C10—H10123.6
C12—N2—C14109.4 (2)C9—C10—H10123.6
C6—C1—C2120.8 (3)C10—C11—C12127.9 (3)
C6—C1—S1129.9 (3)C10—C11—S2111.7 (2)
C2—C1—S1109.2 (2)C12—C11—S2120.3 (2)
N1—C2—C3125.9 (3)N2—C12—C11124.4 (3)
N1—C2—C1115.2 (3)N2—C12—S3116.0 (2)
C3—C2—C1118.9 (3)C11—C12—S3119.5 (2)
C4—C3—C2119.3 (3)C18—C13—C14121.4 (3)
C4—C3—H3120.4C18—C13—S3129.3 (3)
C2—C3—H3120.4C14—C13—S3109.2 (2)
C3—C4—C5121.5 (3)C15—C14—N2124.7 (3)
C3—C4—H4119.3C15—C14—C13119.4 (3)
C5—C4—H4119.3N2—C14—C13115.9 (3)
C6—C5—C4120.8 (3)C16—C15—C14118.3 (3)
C6—C5—H5119.6C16—C15—H15120.9
C4—C5—H5119.6C14—C15—H15120.9
C5—C6—C1118.6 (3)C15—C16—C17122.2 (3)
C5—C6—H6120.7C15—C16—H16118.9
C1—C6—H6120.7C17—C16—H16118.9
N1—C7—C8124.3 (3)C18—C17—C16120.3 (3)
N1—C7—S1115.5 (2)C18—C17—H17119.8
C8—C7—S1120.2 (2)C16—C17—H17119.8
C9—C8—C7129.4 (3)C17—C18—C13118.3 (3)
C9—C8—S2111.5 (2)C17—C18—H18120.8
C7—C8—S2119.1 (2)C13—C18—H18120.8
C8—C9—C10113.0 (3)
C7—S1—C1—C6−178.8 (3)C9—C10—C11—C12−179.3 (2)
C7—S1—C1—C20.3 (2)C9—C10—C11—S2−0.9 (3)
C7—N1—C2—C3−179.5 (3)C8—S2—C11—C100.7 (2)
C7—N1—C2—C10.5 (3)C8—S2—C11—C12179.2 (2)
C6—C1—C2—N1178.7 (2)C14—N2—C12—C11179.5 (2)
S1—C1—C2—N1−0.5 (3)C14—N2—C12—S3−0.6 (3)
C6—C1—C2—C3−1.3 (4)C10—C11—C12—N2−176.7 (3)
S1—C1—C2—C3179.5 (2)S2—C11—C12—N25.1 (4)
N1—C2—C3—C4−179.5 (3)C10—C11—C12—S33.4 (4)
C1—C2—C3—C40.5 (4)S2—C11—C12—S3−174.81 (13)
C2—C3—C4—C50.3 (5)C13—S3—C12—N20.6 (2)
C3—C4—C5—C6−0.3 (5)C13—S3—C12—C11−179.5 (2)
C4—C5—C6—C1−0.6 (5)C12—S3—C13—C18−179.6 (3)
C2—C1—C6—C51.4 (4)C12—S3—C13—C14−0.4 (2)
S1—C1—C6—C5−179.6 (2)C12—N2—C14—C15−178.8 (3)
C2—N1—C7—C8−180.0 (2)C12—N2—C14—C130.2 (3)
C2—N1—C7—S1−0.3 (3)C18—C13—C14—C15−1.5 (4)
C1—S1—C7—N10.0 (2)S3—C13—C14—C15179.3 (2)
C1—S1—C7—C8179.7 (2)C18—C13—C14—N2179.4 (2)
N1—C7—C8—C9−174.9 (3)S3—C13—C14—N20.2 (3)
S1—C7—C8—C95.4 (4)N2—C14—C15—C16179.2 (2)
N1—C7—C8—S25.6 (4)C13—C14—C15—C160.3 (4)
S1—C7—C8—S2−174.02 (14)C14—C15—C16—C171.2 (4)
C11—S2—C8—C9−0.3 (2)C15—C16—C17—C18−1.4 (5)
C11—S2—C8—C7179.2 (2)C16—C17—C18—C130.1 (4)
C7—C8—C9—C10−179.6 (2)C14—C13—C18—C171.3 (4)
S2—C8—C9—C10−0.1 (3)S3—C13—C18—C17−179.7 (2)
C8—C9—C10—C110.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···N1i0.952.633.444 (4)144

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2199).

References

  • Alberti, A., Chatgilialoglu, C. & Guerra, M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1179–1182.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bayh, O., Awad, H., Mongin, F., Hoarau, C., Trecourt, F., Quequiner, G., Marsais, F., Blanco, F., Abarca, B. & Ballesteros, R. (2005). Tetrahedron, 61, 4779–4784.
  • Cheylan, S., Fraleoni-Morgera, A., Puigdollers, J., Voz, C., Setti, L., Alcubilla, R., Badenes, G., Costa-Bizzari, P. & Lanzi, M. (2006). Thin Solid Films, 497, 16–19.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hagen, K. (1986). J. Mol. Struct.145, 359–366.
  • Kaleta, Z., Makowski, B. T., Soos, T. & Dembinski, R. (2006). Org. Lett.8, 1625–1628. [PubMed]
  • Karimian, K. (2009). Expert Opin. Ther. Pat.19, 369–371. [PubMed]
  • Kiryanov, A. A., Seed, A. J. & Sampson, P. (2001). Tetrahedron Lett.42, 8797–8800.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Minetto, G., Raveglia, L. F., Sega, A. & Taddei, M. (2005). Eur. J. Org. Chem. pp. 5277–5288.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abington, England.
  • Salman, S. R. (1982). Org. Magn. Res.20, 151–153.
  • Seed, A. J., Cross, G. J., Toyne, K. J. & Goodby, J. W. (2003). Liq. Cryst.30, 1089–1107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem.39, 3375–3384. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography