PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o626.
Published online 2010 February 13. doi:  10.1107/S1600536810005118
PMCID: PMC2983586

24-Methyl­lanosta-7,25-dien-3-one

Abstract

The title compound [systematic name: 17-(5,6-di­methyl­hept-6-en-2-yl)-4,4,10,13,14-penta­methyl-1,5,6,10,11,12,13,15,16,17-deca­hydro-2H-cyclo­penta­[α]phenanthren-3(4H,9H,14H)-one], C31H50O, is a triterpenoid which was isolated from Skimmia laureola. The three six-membered rings adopt chair, slightly distorted half-chair and distorted boat conformations, and the five-membered ring is in an envelope conformation. All the rings are trans fused. In the crystal structure, there is a weak C—H(...)O hydrogen bond.

Related literature

For related structures, see: Hussain et al. (2009 [triangle]); Schun et al. (1986 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o626-scheme1.jpg

Experimental

Crystal data

  • C31H50O
  • M r = 438.71
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o626-efi1.jpg
  • a = 6.7207 (1) Å
  • b = 19.4804 (5) Å
  • c = 20.5035 (5) Å
  • V = 2684.36 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 173 K
  • 0.30 × 0.05 × 0.04 mm

Data collection

  • Nonius diffractometer with Bruker APEXII CCD
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.981, T max = 0.997
  • 6101 measured reflections
  • 3485 independent reflections
  • 2918 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.122
  • S = 1.15
  • 3485 reflections
  • 297 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005118/lh2983sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005118/lh2983Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The methanol extract of Skimmia laureola affords a novel triterpene, o-methyl cyclolaudenol, the structure of which has been reported recently from our laboratory (Hussain et al. 2009). In this paper, we report the crystal structure of yet an other triterpene which has been isolated from Skimmia laureola, 17-(5,6-dimethylhept-6-en-2-yl)-4,4,10,13,14-pentamethyl- 1,5,6,10,11,12,13,15,16,17-decahydro-2H-cyclopenta[α]phenanthren- 3(4H,9H,14H)-one, (I).

The molecular structure of (I) is presented in Fig. 1. The molecule contains three six-membered rings, A, B and C and a five-membered ring, D. The ring A adopts a chair conformation. The rings B and C show disotortions due to the trans-fused ring D, exhibiting slightly distorted half-chair and distorted boat conformations, respectively. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.521 (3), 0.563 (3), 0.718 (3) Å, θ = 13.5 (3), 49.0 (3), 94.4 (2)° and [var phi] = 27.6 (15), 319.3 (4), 89.9 (2)°, respectively. The ring D adopts a C14-envelope conformation. All rings are trans fused. The crystal structure of a very closely related compound, 24-methylene-25-methyltirucall-7-en-3-one, which is isomorphous with (I), has been reported (Schun et al., 1986). The bond distances (Allen et al., 1987) and angles in (I) are as expected. The structure is devoid of any classical hydrogen bonds. However, a non-classical hydrogen bonding interaction of the type C—H···O is present (Fig. 2 and Table 1).

Experimental

The methanol extract of Skimmia laureola was subjected to silica-gel column chromatography. The column was eluted with increasing polarities of pet. ether/CHCl3. This afforded 4 fractions (PC1–PC4). The fraction PC3 (18 g) obtained by elution with 1 litre of pet. ether/CHCl3 (7.0:3.0) was subjected to the column chromatography. The column was successively eluted with 2 litre of pet. ether and 3 litre of pet. ether/CHCl3 (ranging from 9.0:1.0 to 7.0:3.0) to afford 7 fractions (PC3A–PC3G). The fraction PC3-G (1.4 g) obtained by elution of the column with 500 ml of pet. ether/CHCl3 (7.0:3.0) was further subjected to the column chromatography using 500 ml of pet. ether/CHCl3 (9.8:0.2) to afford the title triterpene, (I), as colourless crystals in needle form.

Refinement

An absolute structure could not be established reliably becuase of insufficient anomalous scattering effects. Therefore, Friedel pairs (2616) were merged. All the H atoms were located from the difference Fourier maps and were included in the refinements at geometrically idealized positions with C—H distances = 0.95–1.00 Å, and Uiso = 1.5 and 1.2 times Ueq of the methyl and non-methyl C-atoms to which they were bonded. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Unit cell packing of (I) showing non-classical hydrogen bonding interaction with dashed lines; H atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C31H50OF(000) = 976
Mr = 438.71Dx = 1.086 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3435 reflections
a = 6.7207 (1) Åθ = 1.0–27.5°
b = 19.4804 (5) ŵ = 0.06 mm1
c = 20.5035 (5) ÅT = 173 K
V = 2684.36 (10) Å3Needle, colourless
Z = 40.30 × 0.05 × 0.04 mm

Data collection

Nonius APEXII CCD diffractometer3485 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −8→8
Tmin = 0.981, Tmax = 0.997k = −25→25
6101 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0302P)2 + 1.38P] where P = (Fo2 + 2Fc2)/3
3485 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.An absolute structure could not be established reliably becuase of insufficient anomalous scattering effects. Therefore, Friedel pairs (2616) were merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8042 (3)0.08030 (13)0.84879 (12)0.0529 (6)
C10.5810 (5)0.11757 (16)0.70242 (16)0.0381 (7)
H1A0.57540.09940.65740.046*
H1B0.68670.15290.70390.046*
C20.6360 (5)0.05905 (15)0.74898 (15)0.0409 (7)
H2A0.53290.02280.74720.049*
H2B0.76460.03860.73570.049*
C30.6518 (5)0.08664 (15)0.81701 (16)0.0371 (7)
C40.4696 (4)0.12362 (15)0.84386 (14)0.0329 (6)
C50.3849 (4)0.17454 (14)0.79152 (13)0.0282 (6)
H50.47780.21460.79240.034*
C60.1812 (5)0.20449 (15)0.81055 (14)0.0351 (7)
H6A0.08450.16650.81590.042*
H6B0.19320.22840.85300.042*
C70.1042 (4)0.25387 (14)0.76047 (13)0.0308 (6)
H7−0.00550.28210.77200.037*
C80.1798 (4)0.26067 (13)0.70088 (13)0.0251 (6)
C90.3595 (4)0.21892 (13)0.67906 (12)0.0264 (6)
H90.47890.24730.69000.032*
C100.3811 (4)0.15119 (14)0.71894 (13)0.0292 (6)
C110.3635 (5)0.20920 (14)0.60485 (13)0.0334 (7)
H11A0.25150.17900.59210.040*
H11B0.48860.18570.59270.040*
C120.3484 (5)0.27749 (14)0.56601 (13)0.0322 (6)
H12A0.48410.29180.55300.039*
H12B0.27170.26890.52560.039*
C130.2496 (4)0.33709 (13)0.60346 (12)0.0246 (5)
C140.0865 (4)0.30780 (13)0.64965 (13)0.0253 (5)
C15−0.0160 (4)0.37378 (14)0.67363 (13)0.0291 (6)
H15A0.06090.39550.70930.035*
H15B−0.15250.36410.68930.035*
C16−0.0200 (4)0.42041 (14)0.61205 (13)0.0292 (6)
H16A0.02150.46770.62340.035*
H16B−0.15590.42220.59360.035*
C170.1276 (4)0.38854 (13)0.56168 (12)0.0256 (6)
H170.04640.36080.53050.031*
C180.4052 (4)0.37806 (14)0.64288 (14)0.0313 (6)
H18A0.34560.42100.65830.038*
H18B0.51970.38850.61500.038*
H18C0.44910.35070.68030.038*
C190.2087 (5)0.10171 (15)0.70309 (16)0.0376 (7)
H19A0.08170.12590.70780.045*
H19B0.21240.06270.73320.045*
H19C0.22250.08510.65820.045*
C200.2346 (4)0.44415 (14)0.52139 (13)0.0294 (6)
H200.29820.47710.55250.035*
C210.3977 (5)0.41495 (16)0.47722 (15)0.0417 (7)
H21A0.46210.45250.45340.050*
H21B0.33860.38270.44610.050*
H21C0.49680.39100.50390.050*
C220.0797 (5)0.48390 (14)0.48107 (14)0.0339 (7)
H22A−0.00020.45050.45580.041*
H22B−0.01160.50780.51140.041*
C230.1663 (5)0.53685 (16)0.43382 (15)0.0412 (8)
H23A0.25500.51290.40270.049*
H23B0.24880.56970.45890.049*
C240.0101 (6)0.57747 (17)0.39493 (15)0.0454 (8)
H24−0.07840.54360.37250.054*
C25−0.1188 (6)0.62273 (18)0.43633 (17)0.0471 (8)
C26−0.3137 (7)0.6268 (3)0.4248 (2)0.0811 (14)
H26A−0.39410.65720.44970.097*
H26B−0.37220.59920.39170.097*
C27−0.0217 (6)0.66514 (19)0.48788 (17)0.0543 (9)
H27A−0.11830.69790.50560.065*
H27B0.09080.69020.46900.065*
H27C0.02620.63520.52290.065*
C280.1132 (7)0.6206 (2)0.34208 (17)0.0600 (11)
H28A0.01240.64320.31500.072*
H28B0.19550.59070.31470.072*
H28C0.19750.65540.36280.072*
C290.5309 (6)0.16468 (18)0.90441 (16)0.0489 (9)
H29A0.41310.18640.92360.059*
H29B0.62710.20010.89190.059*
H29C0.59160.13370.93640.059*
C300.3232 (5)0.06653 (16)0.86562 (17)0.0420 (8)
H30A0.20180.08760.88300.050*
H30B0.38570.03830.89950.050*
H30C0.28940.03760.82810.050*
C31−0.0734 (4)0.26625 (14)0.61295 (14)0.0322 (6)
H31A−0.14490.29650.58280.039*
H31B−0.16740.24660.64440.039*
H31C−0.00960.22920.58830.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0341 (12)0.0587 (15)0.0660 (16)0.0023 (12)−0.0095 (12)0.0157 (13)
C10.0374 (17)0.0334 (15)0.0436 (18)0.0087 (14)0.0071 (15)0.0081 (14)
C20.0351 (17)0.0348 (15)0.0529 (19)0.0089 (14)0.0042 (16)0.0070 (14)
C30.0296 (16)0.0305 (14)0.0511 (17)−0.0051 (13)−0.0015 (14)0.0173 (14)
C40.0299 (15)0.0327 (14)0.0362 (15)−0.0002 (13)−0.0024 (13)0.0103 (12)
C50.0249 (14)0.0276 (13)0.0322 (14)−0.0035 (12)−0.0014 (12)0.0056 (11)
C60.0352 (16)0.0365 (15)0.0336 (15)0.0044 (14)0.0031 (13)0.0050 (12)
C70.0273 (14)0.0334 (14)0.0316 (14)0.0039 (12)0.0034 (13)0.0025 (11)
C80.0216 (13)0.0229 (12)0.0308 (13)−0.0022 (11)−0.0018 (11)−0.0032 (10)
C90.0243 (14)0.0272 (13)0.0277 (12)0.0012 (11)0.0000 (11)0.0004 (11)
C100.0265 (14)0.0275 (13)0.0336 (14)0.0013 (12)0.0003 (12)0.0020 (11)
C110.0396 (17)0.0308 (14)0.0298 (13)0.0101 (14)0.0041 (13)−0.0005 (11)
C120.0348 (16)0.0318 (14)0.0301 (14)0.0062 (13)0.0036 (13)0.0007 (12)
C130.0238 (13)0.0256 (12)0.0244 (12)−0.0015 (11)0.0012 (11)−0.0016 (10)
C140.0213 (13)0.0266 (12)0.0280 (13)−0.0010 (11)0.0002 (11)0.0013 (10)
C150.0225 (13)0.0315 (14)0.0333 (14)0.0060 (12)0.0037 (12)0.0013 (12)
C160.0236 (13)0.0293 (13)0.0348 (14)0.0027 (12)0.0026 (12)0.0023 (11)
C170.0242 (14)0.0258 (12)0.0268 (12)0.0012 (11)−0.0003 (11)0.0018 (10)
C180.0254 (14)0.0331 (14)0.0356 (15)−0.0031 (12)−0.0029 (13)−0.0001 (13)
C190.0395 (17)0.0295 (14)0.0439 (17)−0.0045 (13)−0.0063 (15)−0.0005 (13)
C200.0293 (15)0.0287 (13)0.0302 (13)−0.0028 (12)0.0030 (12)0.0009 (11)
C210.0418 (18)0.0413 (16)0.0419 (16)0.0059 (16)0.0115 (15)0.0104 (14)
C220.0376 (17)0.0299 (13)0.0343 (15)−0.0003 (13)0.0017 (14)0.0063 (12)
C230.0446 (19)0.0379 (16)0.0412 (17)−0.0010 (15)0.0044 (15)0.0107 (14)
C240.060 (2)0.0377 (16)0.0381 (16)−0.0077 (17)−0.0018 (17)0.0070 (14)
C250.049 (2)0.0470 (18)0.0452 (18)0.0015 (17)0.0032 (17)0.0145 (16)
C260.054 (3)0.114 (4)0.075 (3)0.006 (3)−0.001 (2)0.005 (3)
C270.062 (2)0.0481 (19)0.053 (2)0.0064 (19)0.004 (2)0.0004 (17)
C280.080 (3)0.054 (2)0.0456 (19)0.006 (2)0.016 (2)0.0181 (17)
C290.055 (2)0.0503 (19)0.0419 (18)0.0037 (18)−0.0130 (17)0.0045 (15)
C300.0334 (16)0.0398 (17)0.0527 (19)0.0008 (14)0.0029 (15)0.0161 (15)
C310.0278 (15)0.0324 (14)0.0365 (15)−0.0066 (12)−0.0071 (13)0.0033 (12)

Geometric parameters (Å, °)

O1—C31.220 (4)C17—C201.540 (4)
C1—C21.532 (4)C17—H171.0000
C1—C101.533 (4)C18—H18A0.9800
C1—H1A0.9900C18—H18B0.9800
C1—H1B0.9900C18—H18C0.9800
C2—C31.499 (4)C19—H19A0.9800
C2—H2A0.9900C19—H19B0.9800
C2—H2B0.9900C19—H19C0.9800
C3—C41.524 (4)C20—C211.532 (4)
C4—C291.533 (4)C20—C221.538 (4)
C4—C301.551 (4)C20—H201.0000
C4—C51.568 (4)C21—H21A0.9800
C5—C61.539 (4)C21—H21B0.9800
C5—C101.556 (4)C21—H21C0.9800
C5—H51.0000C22—C231.530 (4)
C6—C71.499 (4)C22—H22A0.9900
C6—H6A0.9900C22—H22B0.9900
C6—H6B0.9900C23—C241.538 (5)
C7—C81.330 (4)C23—H23A0.9900
C7—H70.9500C23—H23B0.9900
C8—C91.523 (4)C24—C251.499 (5)
C8—C141.530 (4)C24—C281.536 (4)
C9—C111.534 (4)C24—H241.0000
C9—C101.559 (4)C25—C261.333 (6)
C9—H91.0000C25—C271.492 (5)
C10—C191.542 (4)C26—H26A0.9500
C11—C121.554 (4)C26—H26B0.9500
C11—H11A0.9900C27—H27A0.9800
C11—H11B0.9900C27—H27B0.9800
C12—C131.542 (4)C27—H27C0.9800
C12—H12A0.9900C28—H28A0.9800
C12—H12B0.9900C28—H28B0.9800
C13—C181.544 (4)C28—H28C0.9800
C13—C171.552 (4)C29—H29A0.9800
C13—C141.557 (4)C29—H29B0.9800
C14—C151.539 (4)C29—H29C0.9800
C14—C311.541 (4)C30—H30A0.9800
C15—C161.556 (4)C30—H30B0.9800
C15—H15A0.9900C30—H30C0.9800
C15—H15B0.9900C31—H31A0.9800
C16—C171.561 (4)C31—H31B0.9800
C16—H16A0.9900C31—H31C0.9800
C16—H16B0.9900
C2—C1—C10113.1 (3)H16A—C16—H16B108.6
C2—C1—H1A109.0C20—C17—C13120.2 (2)
C10—C1—H1A109.0C20—C17—C16111.8 (2)
C2—C1—H1B109.0C13—C17—C16103.1 (2)
C10—C1—H1B109.0C20—C17—H17107.0
H1A—C1—H1B107.8C13—C17—H17107.0
C3—C2—C1109.3 (2)C16—C17—H17107.0
C3—C2—H2A109.8C13—C18—H18A109.5
C1—C2—H2A109.8C13—C18—H18B109.5
C3—C2—H2B109.8H18A—C18—H18B109.5
C1—C2—H2B109.8C13—C18—H18C109.5
H2A—C2—H2B108.3H18A—C18—H18C109.5
O1—C3—C2121.3 (3)H18B—C18—H18C109.5
O1—C3—C4122.0 (3)C10—C19—H19A109.5
C2—C3—C4116.7 (3)C10—C19—H19B109.5
C3—C4—C29108.9 (3)H19A—C19—H19B109.5
C3—C4—C30106.0 (2)C10—C19—H19C109.5
C29—C4—C30108.2 (3)H19A—C19—H19C109.5
C3—C4—C5110.1 (2)H19B—C19—H19C109.5
C29—C4—C5108.8 (2)C21—C20—C22110.7 (2)
C30—C4—C5114.8 (2)C21—C20—C17113.0 (2)
C6—C5—C10109.8 (2)C22—C20—C17109.1 (2)
C6—C5—C4112.9 (2)C21—C20—H20108.0
C10—C5—C4118.4 (2)C22—C20—H20108.0
C6—C5—H5104.8C17—C20—H20108.0
C10—C5—H5104.8C20—C21—H21A109.5
C4—C5—H5104.8C20—C21—H21B109.5
C7—C6—C5112.1 (2)H21A—C21—H21B109.5
C7—C6—H6A109.2C20—C21—H21C109.5
C5—C6—H6A109.2H21A—C21—H21C109.5
C7—C6—H6B109.2H21B—C21—H21C109.5
C5—C6—H6B109.2C23—C22—C20115.0 (3)
H6A—C6—H6B107.9C23—C22—H22A108.5
C8—C7—C6124.2 (3)C20—C22—H22A108.5
C8—C7—H7117.9C23—C22—H22B108.5
C6—C7—H7117.9C20—C22—H22B108.5
C7—C8—C9121.3 (2)H22A—C22—H22B107.5
C7—C8—C14122.3 (2)C22—C23—C24114.5 (3)
C9—C8—C14116.4 (2)C22—C23—H23A108.6
C8—C9—C11111.8 (2)C24—C23—H23A108.6
C8—C9—C10111.8 (2)C22—C23—H23B108.6
C11—C9—C10114.5 (2)C24—C23—H23B108.6
C8—C9—H9106.0H23A—C23—H23B107.6
C11—C9—H9106.0C25—C24—C28109.8 (3)
C10—C9—H9106.0C25—C24—C23113.8 (3)
C1—C10—C19110.2 (2)C28—C24—C23109.8 (3)
C1—C10—C5108.8 (2)C25—C24—H24107.7
C19—C10—C5113.4 (2)C28—C24—H24107.7
C1—C10—C9109.1 (2)C23—C24—H24107.7
C19—C10—C9110.4 (2)C26—C25—C27121.5 (4)
C5—C10—C9104.8 (2)C26—C25—C24120.1 (4)
C9—C11—C12113.7 (2)C27—C25—C24118.3 (3)
C9—C11—H11A108.8C25—C26—H26A120.0
C12—C11—H11A108.8C25—C26—H26B120.0
C9—C11—H11B108.8H26A—C26—H26B120.0
C12—C11—H11B108.8C25—C27—H27A109.5
H11A—C11—H11B107.7C25—C27—H27B109.5
C13—C12—C11114.7 (2)H27A—C27—H27B109.5
C13—C12—H12A108.6C25—C27—H27C109.5
C11—C12—H12A108.6H27A—C27—H27C109.5
C13—C12—H12B108.6H27B—C27—H27C109.5
C11—C12—H12B108.6C24—C28—H28A109.5
H12A—C12—H12B107.6C24—C28—H28B109.5
C12—C13—C18111.0 (2)H28A—C28—H28B109.5
C12—C13—C17116.0 (2)C24—C28—H28C109.5
C18—C13—C17108.2 (2)H28A—C28—H28C109.5
C12—C13—C14109.3 (2)H28B—C28—H28C109.5
C18—C13—C14110.4 (2)C4—C29—H29A109.5
C17—C13—C14101.6 (2)C4—C29—H29B109.5
C8—C14—C15117.7 (2)H29A—C29—H29B109.5
C8—C14—C31107.8 (2)C4—C29—H29C109.5
C15—C14—C31106.4 (2)H29A—C29—H29C109.5
C8—C14—C13110.4 (2)H29B—C29—H29C109.5
C15—C14—C13101.7 (2)C4—C30—H30A109.5
C31—C14—C13112.7 (2)C4—C30—H30B109.5
C14—C15—C16103.6 (2)H30A—C30—H30B109.5
C14—C15—H15A111.0C4—C30—H30C109.5
C16—C15—H15A111.0H30A—C30—H30C109.5
C14—C15—H15B111.0H30B—C30—H30C109.5
C16—C15—H15B111.0C14—C31—H31A109.5
H15A—C15—H15B109.0C14—C31—H31B109.5
C15—C16—C17107.1 (2)H31A—C31—H31B109.5
C15—C16—H16A110.3C14—C31—H31C109.5
C17—C16—H16A110.3H31A—C31—H31C109.5
C15—C16—H16B110.3H31B—C31—H31C109.5
C17—C16—H16B110.3
C10—C1—C2—C3−60.6 (3)C11—C12—C13—C17−147.3 (2)
C1—C2—C3—O1−123.0 (3)C11—C12—C13—C14−33.2 (3)
C1—C2—C3—C456.2 (3)C7—C8—C14—C1532.7 (4)
O1—C3—C4—C2914.7 (4)C9—C8—C14—C15−150.2 (2)
C2—C3—C4—C29−164.5 (2)C7—C8—C14—C31−87.6 (3)
O1—C3—C4—C30−101.4 (3)C9—C8—C14—C3189.5 (3)
C2—C3—C4—C3079.4 (3)C7—C8—C14—C13148.8 (3)
O1—C3—C4—C5133.9 (3)C9—C8—C14—C13−34.0 (3)
C2—C3—C4—C5−45.3 (3)C12—C13—C14—C863.0 (3)
C3—C4—C5—C6170.2 (2)C18—C13—C14—C8−59.3 (3)
C29—C4—C5—C6−70.6 (3)C17—C13—C14—C8−173.9 (2)
C30—C4—C5—C650.7 (3)C12—C13—C14—C15−171.2 (2)
C3—C4—C5—C1039.9 (3)C18—C13—C14—C1566.5 (3)
C29—C4—C5—C10159.1 (3)C17—C13—C14—C15−48.2 (2)
C30—C4—C5—C10−79.6 (3)C12—C13—C14—C31−57.7 (3)
C10—C5—C6—C7−46.4 (3)C18—C13—C14—C31−180.0 (2)
C4—C5—C6—C7179.1 (2)C17—C13—C14—C3165.4 (3)
C5—C6—C7—C813.1 (4)C8—C14—C15—C16159.4 (2)
C6—C7—C8—C9−1.8 (4)C31—C14—C15—C16−79.6 (2)
C6—C7—C8—C14175.2 (3)C13—C14—C15—C1638.6 (3)
C7—C8—C9—C11154.0 (3)C14—C15—C16—C17−14.9 (3)
C14—C8—C9—C11−23.2 (3)C12—C13—C17—C20−78.1 (3)
C7—C8—C9—C1024.2 (4)C18—C13—C17—C2047.3 (3)
C14—C8—C9—C10−153.0 (2)C14—C13—C17—C20163.5 (2)
C2—C1—C10—C19−70.5 (3)C12—C13—C17—C16156.6 (2)
C2—C1—C10—C554.3 (3)C18—C13—C17—C16−78.0 (2)
C2—C1—C10—C9168.1 (3)C14—C13—C17—C1638.2 (2)
C6—C5—C10—C1−176.6 (2)C15—C16—C17—C20−145.2 (2)
C4—C5—C10—C1−44.9 (3)C15—C16—C17—C13−14.6 (3)
C6—C5—C10—C19−53.6 (3)C13—C17—C20—C2152.2 (3)
C4—C5—C10—C1978.1 (3)C16—C17—C20—C21173.3 (2)
C6—C5—C10—C966.9 (3)C13—C17—C20—C22175.7 (2)
C4—C5—C10—C9−161.5 (2)C16—C17—C20—C22−63.2 (3)
C8—C9—C10—C1−171.0 (2)C21—C20—C22—C23−49.9 (3)
C11—C9—C10—C160.5 (3)C17—C20—C22—C23−174.8 (2)
C8—C9—C10—C1967.7 (3)C20—C22—C23—C24−178.6 (3)
C11—C9—C10—C19−60.7 (3)C22—C23—C24—C2565.2 (4)
C8—C9—C10—C5−54.7 (3)C22—C23—C24—C28−171.3 (3)
C11—C9—C10—C5176.9 (2)C28—C24—C25—C2698.2 (5)
C8—C9—C11—C1253.3 (3)C23—C24—C25—C26−138.3 (4)
C10—C9—C11—C12−178.2 (2)C28—C24—C25—C27−78.8 (4)
C9—C11—C12—C13−23.7 (4)C23—C24—C25—C2744.7 (4)
C11—C12—C13—C1888.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.992.553.528 (4)169

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2983).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hussain, N., Habib-ur-Rehman, & Parvez, M. (2009). Acta Cryst. E65, o1202. [PMC free article] [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Schun, Y., Cordell, G. A., Cox, P. J. & Howie, R. A. (1986). Phytochemistry, 25, 753–755.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography