PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o599–o600.
Published online 2010 February 13. doi:  10.1107/S1600536810004812
PMCID: PMC2983585

Ethyl (2Z)-2-(3-methoxy­benzyl­idene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

Abstract

In the title compound, C24H22N2O4S, the central pyrimidine ring is significantly puckered, assuming a conformation inter­mediate between a boat and a screw boat. The nearly planar thia­zole ring (r.m.s. deviation = 0.0258 Å) is fused with the pyriamidine ring, making a dihedral angle of 9.83 (7)°. The carboxyl group is in an extended conformation with an anti-periplanar orientation with respect to the dihydropyrimidine ring. The benzene ring linked at the chiral C atom is perpendicular to the pyrimidine ring [dihedral angle = 85.21 (8)°] whereas the phenyl ring is nearly coplanar, making a dihedral angle of 13.20 (8)°. An intra­molecular C—H(...)S hydrogen bond is observed. The crystal packing is influenced by weak inter­molecular C—H(...)π inter­actions and π–π stacking between the thia­zole and phenyl rings [centroid–centroid distance = 3.9656 (10) Å], which stack the mol­ecules along the c axis.

Related literature

For related structures, see: Jotani & Baldaniya (2008 [triangle]); Sridhar et al. (2006 [triangle]); Fischer et al. (2007 [triangle]); Baldaniya & Jotani (2008 [triangle]); Jotani et al. (2009 [triangle]). For the biological activity of dihydro­pyrimidines, see: Wichmann et al. (1999 [triangle]); Kappe (2000 [triangle]); Mayer et al. (1999 [triangle]). For a description of the Cambridge Structural Database, see: Allen, (2002 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o599-scheme1.jpg

Experimental

Crystal data

  • C24H22N2O4S
  • M r = 434.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o599-efi1.jpg
  • a = 33.0445 (6) Å
  • b = 9.5013 (2) Å
  • c = 13.8845 (2) Å
  • β = 101.548 (1)°
  • V = 4271.01 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.946, T max = 0.973
  • 27172 measured reflections
  • 6222 independent reflections
  • 4099 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.113
  • S = 0.93
  • 6222 reflections
  • 284 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004812/ng2731sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004812/ng2731Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India for the data collection. MMJ thanks the University Grant Commission (Western Regional Office), India, for their support of Mionor Research Project F. No. 47–254-07.

supplementary crystallographic information

Comment

Series of fused thiazolo [3,2-a] pyrimidine derivatives are antagonistic to group 2 mGlu receptors depending upon substitution of two phenyl rings at the 2 and 5 positions as well as substituents at positions 6 and 7 of the scaffold (Wichmann et al., 1999). Moreover dihydropyrimidines (DHPMs) have remarkable potency with antiviral, antitumor, antibacterial and anti-inflammatory activities, and are used as antihypertensive agents and calcium channel modulators (Kappe, 2000). A DHPM analog has been identified as a potential anticancer lead that is involved in blocking mitosis by inhibition of a kinesin motor protein (Mayer et al., 1999). In continuation of our studies on a series of pharmacologically interesting thiazolo [3,2-a] pyrimidine derivatives (Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009) to examine the effect of substituents of varying size from the phenyl ring on crystal packing, a crystal structure of the title compound, C24H22N2O4S, (I), is reported.

In (I), the central pyrimidine ring with a chiral C2 atom at the point of substitution of a benzene ring (C11-C16) is significantly puckered and adopts a conformation which is best described as an intermediate between a boat and screw boat form, Fig. 1. The ring puckering parameters (Cremer & Pople, 1975) for the pyrimidine ring are q2 = 0.1997 (14) Å, q3 = 0.0575 (17)Å, Q = 0.2090 (15) Å; θ = 74.1 (4) ° and [var phi] = 157.9 (4)°. Idealized values for a boat and screw boat conformation are: θ = 90° and 67.5°, and [var phi] = 60k and (60k + 30)°, respectively, where k is an integer. The fusion of a nearly planar thiazole ring (r.m.s. deviation = 0.0258Å) results in slightly deviated N1—C1 and N1—C4 bond lengths in the pyrimidine ring. The fused thiazole ring has geometrical parameters similar to analagous structures (Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009; Sridhar et al., 2006; Fischer et al., 2007). The dihedral angles between the mean planes of the benzene (C11-C16) and 3-methoxy phenyl ring (C18-C23) substituted at the carbon C6 atom and the pyrimidine ring are 85.21 (8)° and 13.20 (8)° respectively. The dihedral angle between the mean planes of the benzene (C11-C16) and 3-methoxy phenyl rings (C18-C23) is 87.73°. The carboxyl group linked at C3 atom is in an extended conformation with an anti-periplanar orientation with respect to pyrimidine ring. The ethyl group remains nearly planar (C8/O3/C9/C10 = -156.87 (19)° resulting a trans conformation of ethoxy group with respect to O2—C9 bond. A short intramolecular C—H···S hydrogen bond between the phenyl carbon C19 and thiazolo sulphur S1 (Fig. 2 & Table 1) forms a pseudo-six-membered ring of S(6) graph-set motif (Bernstein et al., 1995) which helps to consolidate the crystal packing. C-H···Cg π interactions exist between a carboxylate carbon atom and benzene (Cg3) [C10···H10···Cg3], and between a phenyl carbon atom and benzene (Cg3) [C21—H21···Cg3], (Table 2). In addition a weak π–π intermolecular interaction is observed between the ring centroids of the thiazole (Cg1) and phenyl (Cg4) rings (Fig. 3, Table 3).

Experimental

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g m) in glacial acetic acid (25 ml), acetic anhydride (10 ml) and 3-methoxy benzaldehyde (0.01 mol) was refluxed for 3 hours. The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (84 % yield, mp 423 K). The compound was recrystallized by slow evaporation of a benzene-ethanol (8:2) solution, yielding colorless, single crystals suitable for X-ray diffraction.

Refinement

H atoms were placed in idealized positions (C—H = 0.93— 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids. Dashed line indicates an intramolecular bond.
Fig. 2.
PLATON (Spek, 2009) plot of (I), showing weak C—H···π intermolecular interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Fig. 3.
A view of the π-π stacking interaction (dashed line) in the crystal structure of (I). H atoms have been omitted for clarity.

Crystal data

C24H22N2O4SF(000) = 1824
Mr = 434.50Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5670 reflections
a = 33.0445 (6) Åθ = 3.0–30.0°
b = 9.5013 (2) ŵ = 0.19 mm1
c = 13.8845 (2) ÅT = 293 K
β = 101.548 (1)°Plate, colorless
V = 4271.01 (13) Å30.30 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer6222 independent reflections
Radiation source: fine-focus sealed tube4099 reflections with I > 2σ(I)
graphiteRint = 0.035
ω and [var phi] scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −46→46
Tmin = 0.946, Tmax = 0.973k = −13→13
27172 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.049P)2 + 2.3025P] where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
6222 reflectionsΔρmax = 0.24 e Å3
284 parametersΔρmin = −0.23 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00104 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.235672 (11)0.12268 (4)0.10790 (3)0.05063 (12)
N10.18618 (4)0.34110 (13)0.11604 (10)0.0487 (3)
N20.15837 (3)0.11297 (12)0.11518 (9)0.0373 (2)
O10.14512 (3)−0.11959 (11)0.12997 (10)0.0571 (3)
O20.04874 (4)0.27636 (13)0.15987 (10)0.0672 (4)
O30.06592 (4)0.49424 (12)0.12836 (10)0.0629 (3)
O40.37128 (4)−0.07609 (15)0.09922 (11)0.0733 (4)
C10.18927 (4)0.20741 (15)0.11242 (11)0.0406 (3)
C20.11507 (4)0.15838 (14)0.10056 (10)0.0368 (3)
H20.10180.10700.14700.044*
C30.11429 (4)0.31329 (14)0.12389 (10)0.0381 (3)
C40.14806 (4)0.39460 (15)0.13134 (11)0.0432 (3)
C50.16927 (4)−0.02682 (15)0.12298 (11)0.0411 (3)
C60.21375 (4)−0.04258 (15)0.12057 (11)0.0416 (3)
C70.15201 (5)0.54599 (17)0.16009 (15)0.0617 (5)
H7A0.14940.60320.10220.093*
H7B0.17850.56190.20180.093*
H7C0.13060.57040.19480.093*
C80.07349 (5)0.35749 (15)0.14060 (11)0.0426 (3)
C90.02824 (6)0.5474 (2)0.15207 (18)0.0759 (6)
H9A0.03210.56450.22220.091*
H9B0.00630.47870.13400.091*
C100.01708 (7)0.6780 (2)0.09834 (18)0.0874 (7)
H10A0.03980.74260.11240.131*
H10B−0.00660.71860.11820.131*
H10C0.01060.65870.02910.131*
C110.09283 (4)0.12247 (14)−0.00271 (11)0.0394 (3)
C120.10440 (5)0.18604 (18)−0.08289 (12)0.0504 (4)
H120.12460.2555−0.07300.060*
C130.08613 (5)0.1470 (2)−0.17714 (13)0.0638 (5)
H130.09450.1883−0.23060.077*
C140.05548 (6)0.0471 (2)−0.19211 (15)0.0670 (5)
H140.04310.0210−0.25580.080*
C150.04305 (5)−0.0141 (2)−0.11405 (16)0.0651 (5)
H150.0221−0.0809−0.12460.078*
C160.06171 (5)0.02327 (16)−0.01906 (13)0.0509 (4)
H160.0532−0.01880.03400.061*
C170.23076 (4)−0.16995 (17)0.12650 (11)0.0459 (3)
H170.2127−0.24270.13350.055*
C180.27255 (4)−0.21580 (16)0.12404 (11)0.0452 (3)
C190.30375 (5)−0.12586 (17)0.11084 (12)0.0506 (4)
H190.2983−0.03020.10200.061*
C200.34317 (5)−0.1759 (2)0.11051 (12)0.0533 (4)
C210.35128 (5)−0.3184 (2)0.12200 (12)0.0588 (4)
H210.3776−0.35290.12190.071*
C220.32012 (5)−0.4086 (2)0.13349 (13)0.0597 (4)
H220.3255−0.50450.14060.072*
C230.28096 (5)−0.35955 (17)0.13471 (12)0.0520 (4)
H230.2602−0.42200.14260.062*
C240.41086 (5)−0.1219 (3)0.08662 (16)0.0806 (6)
H24A0.4245−0.17050.14470.121*
H24B0.4270−0.04190.07550.121*
H24C0.4077−0.18430.03120.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.03193 (18)0.0440 (2)0.0776 (3)0.00373 (15)0.01474 (17)0.00509 (18)
N10.0357 (6)0.0366 (7)0.0741 (9)−0.0006 (5)0.0117 (6)0.0037 (6)
N20.0287 (5)0.0328 (6)0.0502 (7)0.0034 (4)0.0072 (4)0.0033 (5)
O10.0435 (6)0.0346 (6)0.0973 (9)0.0032 (5)0.0237 (6)0.0075 (5)
O20.0542 (7)0.0474 (7)0.1104 (10)0.0035 (6)0.0416 (7)0.0055 (6)
O30.0529 (7)0.0417 (6)0.1035 (10)0.0146 (5)0.0386 (6)0.0074 (6)
O40.0429 (6)0.0804 (9)0.1015 (10)0.0056 (6)0.0259 (6)0.0009 (8)
C10.0314 (6)0.0387 (8)0.0508 (8)0.0015 (6)0.0063 (6)0.0034 (6)
C20.0287 (6)0.0331 (7)0.0503 (8)0.0036 (5)0.0120 (5)0.0034 (6)
C30.0365 (7)0.0325 (7)0.0464 (8)0.0055 (5)0.0109 (6)0.0019 (6)
C40.0397 (7)0.0324 (7)0.0571 (9)0.0033 (6)0.0087 (6)0.0029 (6)
C50.0360 (7)0.0346 (7)0.0533 (8)0.0060 (6)0.0104 (6)0.0037 (6)
C60.0337 (7)0.0416 (8)0.0501 (8)0.0059 (6)0.0093 (6)0.0036 (6)
C70.0529 (10)0.0340 (8)0.0951 (14)−0.0007 (7)0.0073 (9)−0.0062 (8)
C80.0427 (7)0.0383 (8)0.0497 (8)0.0064 (6)0.0168 (6)0.0002 (6)
C90.0631 (11)0.0580 (12)0.1196 (17)0.0211 (9)0.0493 (12)0.0010 (11)
C100.0741 (14)0.0789 (15)0.1087 (17)0.0371 (12)0.0170 (12)−0.0026 (13)
C110.0289 (6)0.0341 (7)0.0551 (8)0.0075 (5)0.0081 (6)−0.0022 (6)
C120.0399 (8)0.0559 (10)0.0548 (9)0.0037 (7)0.0080 (7)−0.0002 (7)
C130.0489 (9)0.0858 (14)0.0555 (10)0.0150 (9)0.0071 (8)−0.0010 (9)
C140.0511 (10)0.0773 (13)0.0652 (12)0.0198 (9)−0.0063 (8)−0.0185 (10)
C150.0399 (8)0.0525 (10)0.0941 (15)0.0035 (8)−0.0075 (9)−0.0161 (10)
C160.0366 (7)0.0409 (8)0.0733 (11)0.0023 (6)0.0062 (7)−0.0022 (7)
C170.0378 (7)0.0429 (8)0.0576 (9)0.0083 (6)0.0111 (6)0.0028 (7)
C180.0397 (7)0.0486 (9)0.0469 (8)0.0140 (6)0.0078 (6)0.0005 (6)
C190.0414 (8)0.0504 (9)0.0605 (10)0.0125 (7)0.0116 (7)0.0005 (7)
C200.0401 (8)0.0688 (11)0.0517 (9)0.0100 (8)0.0109 (7)−0.0019 (8)
C210.0454 (9)0.0744 (12)0.0569 (10)0.0266 (9)0.0105 (7)−0.0012 (8)
C220.0580 (10)0.0561 (10)0.0651 (11)0.0262 (8)0.0124 (8)0.0025 (8)
C230.0487 (9)0.0512 (9)0.0568 (9)0.0146 (7)0.0122 (7)0.0012 (7)
C240.0394 (9)0.1200 (19)0.0849 (14)0.0135 (11)0.0187 (9)0.0131 (12)

Geometric parameters (Å, °)

S1—C11.7439 (14)C10—H10B0.9600
S1—C61.7528 (15)C10—H10C0.9600
N1—C11.2761 (19)C11—C161.380 (2)
N1—C41.4134 (18)C11—C121.386 (2)
N2—C11.3655 (17)C12—C131.378 (2)
N2—C51.3747 (17)C12—H120.9300
N2—C21.4693 (16)C13—C141.374 (3)
O1—C51.2059 (17)C13—H130.9300
O2—C81.1928 (18)C14—C151.364 (3)
O3—C81.3277 (17)C14—H140.9300
O3—C91.4413 (18)C15—C161.386 (2)
O4—C201.358 (2)C15—H150.9300
O4—C241.422 (2)C16—H160.9300
C2—C31.5084 (19)C17—C181.4551 (19)
C2—C111.513 (2)C17—H170.9300
C2—H20.9800C18—C191.379 (2)
C3—C41.3441 (19)C18—C231.396 (2)
C3—C81.4740 (19)C19—C201.388 (2)
C4—C71.491 (2)C19—H190.9300
C5—C61.4842 (19)C20—C211.383 (3)
C6—C171.330 (2)C21—C221.373 (3)
C7—H7A0.9600C21—H210.9300
C7—H7B0.9600C22—C231.379 (2)
C7—H7C0.9600C22—H220.9300
C9—C101.457 (3)C23—H230.9300
C9—H9A0.9700C24—H24A0.9600
C9—H9B0.9700C24—H24B0.9600
C10—H10A0.9600C24—H24C0.9600
C1—S1—C691.48 (7)H10A—C10—H10C109.5
C1—N1—C4116.41 (12)H10B—C10—H10C109.5
C1—N2—C5116.84 (11)C16—C11—C12118.81 (14)
C1—N2—C2121.08 (11)C16—C11—C2120.96 (13)
C5—N2—C2121.81 (11)C12—C11—C2120.20 (13)
C8—O3—C9117.58 (13)C13—C12—C11120.45 (16)
C20—O4—C24117.87 (16)C13—C12—H12119.8
N1—C1—N2125.93 (13)C11—C12—H12119.8
N1—C1—S1122.60 (11)C14—C13—C12119.96 (18)
N2—C1—S1111.43 (10)C14—C13—H13120.0
N2—C2—C3108.35 (11)C12—C13—H13120.0
N2—C2—C11109.85 (10)C15—C14—C13120.32 (17)
C3—C2—C11113.42 (11)C15—C14—H14119.8
N2—C2—H2108.4C13—C14—H14119.8
C3—C2—H2108.4C14—C15—C16119.98 (17)
C11—C2—H2108.4C14—C15—H15120.0
C4—C3—C8126.55 (13)C16—C15—H15120.0
C4—C3—C2121.85 (12)C11—C16—C15120.45 (16)
C8—C3—C2111.55 (12)C11—C16—H16119.8
C3—C4—N1122.20 (13)C15—C16—H16119.8
C3—C4—C7127.00 (14)C6—C17—C18131.48 (15)
N1—C4—C7110.74 (13)C6—C17—H17114.3
O1—C5—N2123.05 (12)C18—C17—H17114.3
O1—C5—C6127.03 (13)C19—C18—C23118.83 (14)
N2—C5—C6109.91 (12)C19—C18—C17123.77 (14)
C17—C6—C5119.90 (13)C23—C18—C17117.40 (15)
C17—C6—S1130.03 (11)C18—C19—C20121.03 (15)
C5—C6—S1110.06 (10)C18—C19—H19119.5
C4—C7—H7A109.5C20—C19—H19119.5
C4—C7—H7B109.5O4—C20—C21125.14 (15)
H7A—C7—H7B109.5O4—C20—C19115.18 (16)
C4—C7—H7C109.5C21—C20—C19119.68 (16)
H7A—C7—H7C109.5C22—C21—C20119.45 (15)
H7B—C7—H7C109.5C22—C21—H21120.3
O2—C8—O3122.74 (13)C20—C21—H21120.3
O2—C8—C3122.77 (13)C21—C22—C23121.21 (16)
O3—C8—C3114.43 (13)C21—C22—H22119.4
O3—C9—C10108.86 (16)C23—C22—H22119.4
O3—C9—H9A109.9C22—C23—C18119.79 (17)
C10—C9—H9A109.9C22—C23—H23120.1
O3—C9—H9B109.9C18—C23—H23120.1
C10—C9—H9B109.9O4—C24—H24A109.5
H9A—C9—H9B108.3O4—C24—H24B109.5
C9—C10—H10A109.5H24A—C24—H24B109.5
C9—C10—H10B109.5O4—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
C9—C10—H10C109.5H24B—C24—H24C109.5
C4—N1—C1—N24.8 (2)C4—C3—C8—O2−158.39 (16)
C4—N1—C1—S1−172.62 (11)C2—C3—C8—O219.1 (2)
C5—N2—C1—N1−171.96 (14)C4—C3—C8—O324.3 (2)
C2—N2—C1—N114.0 (2)C2—C3—C8—O3−158.23 (13)
C5—N2—C1—S15.71 (16)C8—O3—C9—C10−156.88 (18)
C2—N2—C1—S1−168.38 (10)N2—C2—C11—C16113.42 (13)
C6—S1—C1—N1172.96 (14)C3—C2—C11—C16−125.17 (14)
C6—S1—C1—N2−4.80 (11)N2—C2—C11—C12−64.54 (16)
C1—N2—C2—C3−22.21 (17)C3—C2—C11—C1256.87 (16)
C5—N2—C2—C3164.00 (12)C16—C11—C12—C13−2.3 (2)
C1—N2—C2—C11102.20 (14)C2—C11—C12—C13175.70 (14)
C5—N2—C2—C11−71.60 (16)C11—C12—C13—C141.7 (3)
N2—C2—C3—C415.01 (18)C12—C13—C14—C15−0.1 (3)
C11—C2—C3—C4−107.23 (15)C13—C14—C15—C16−0.8 (3)
N2—C2—C3—C8−162.59 (11)C12—C11—C16—C151.4 (2)
C11—C2—C3—C875.16 (15)C2—C11—C16—C15−176.60 (13)
C8—C3—C4—N1178.44 (14)C14—C15—C16—C110.1 (2)
C2—C3—C4—N11.2 (2)C5—C6—C17—C18178.62 (15)
C8—C3—C4—C71.4 (3)S1—C6—C17—C18−0.4 (3)
C2—C3—C4—C7−175.82 (15)C6—C17—C18—C19−2.3 (3)
C1—N1—C4—C3−12.3 (2)C6—C17—C18—C23178.40 (16)
C1—N1—C4—C7165.13 (14)C23—C18—C19—C20−1.6 (2)
C1—N2—C5—O1177.02 (14)C17—C18—C19—C20179.12 (15)
C2—N2—C5—O1−8.9 (2)C24—O4—C20—C217.8 (3)
C1—N2—C5—C6−3.43 (18)C24—O4—C20—C19−172.72 (16)
C2—N2—C5—C6170.62 (12)C18—C19—C20—O4−178.46 (15)
O1—C5—C6—C170.0 (2)C18—C19—C20—C211.1 (2)
N2—C5—C6—C17−179.57 (13)O4—C20—C21—C22179.52 (16)
O1—C5—C6—S1179.16 (14)C19—C20—C21—C220.1 (2)
N2—C5—C6—S1−0.38 (15)C20—C21—C22—C23−0.6 (3)
C1—S1—C6—C17−178.02 (15)C21—C22—C23—C180.0 (3)
C1—S1—C6—C52.89 (11)C19—C18—C23—C221.0 (2)
C9—O3—C8—O28.2 (3)C17—C18—C23—C22−179.63 (15)
C9—O3—C8—C3−174.50 (16)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···S10.932.543.2561 (15)134
C10—H10B···Cg3i0.962.873.755 (3)153
C21—H21···Cg3ii0.932.793.602 (2)147

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, −y−1/2, −z.

Table 2 π-π Hydrogen-bond geometry (Å, °) for (I).

Cg1···Cg4iii3.9656 (10)

Symmetry codes: (iii) 1/2-x,1/2+y,1/2-z; Cg1 and Cg4 are the centroids of the S1/C1/N2/C5/C6 amd C18—C23 rings.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2731).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baldaniya, B. B. & Jotani, M. M. (2008). Anal Sci. X-ray Struct. Anal. Online, 24, x217–x218
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2, SAINTand XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.
  • Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739. [PMC free article] [PubMed]
  • Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr.39, 898–901.
  • Kappe, C. O. (2000). Eur. J. Med. Chem.35, 1043–1052. [PubMed]
  • Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690. [PubMed]
  • Wichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett.9, 1573–1576. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography