PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m267.
Published online 2010 February 6. doi:  10.1107/S1600536810002837
PMCID: PMC2983580

catena-Poly[[dichloridoiron(II)]-μ-4,4′′-bis­(benzimidazol-1-yl)-1,1′:4′,1′′-terphen­yl]

Abstract

In the title coordination polymer, [FeCl2(C32H22N4)]n, the FeII atom lies on a crystallographic twofold axis and a distorted FeCl2N2 tetra­hedral coordination geometry arises. The complete ligand is generated by crystallographic twofold symmetry, resulting in an infinite one-dimensional architecture along [101].

Related literature

For background to benzimidazoles as ligands, see: Vijayan et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m267-scheme1.jpg

Experimental

Crystal data

  • [FeCl2(C32H22N4)]
  • M r = 589.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m267-efi1.jpg
  • a = 14.519 (3) Å
  • b = 14.303 (3) Å
  • c = 12.461 (3) Å
  • β = 101.94 (3)°
  • V = 2531.6 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.846, T max = 0.882
  • 9515 measured reflections
  • 2218 independent reflections
  • 1960 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.117
  • S = 1.12
  • 2218 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002837/hb5310sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002837/hb5310Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the College Research Program of Yuncheng University [2008114] for funding.

supplementary crystallographic information

Comment

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on benzoimidazole ligands bearing rigid spacers is still less developed.

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group C2/c. The geometry of the FeII ion is surrounded by two benzimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated FeII center is bridged by the linear ligand L to form an infinite one-dimensional architecture along crystallographic [101] axis.

Experimental

A mixture of (CH3)2CHOH and CHCl3 (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl3 (6 ml). Then a solution of FeCl2 (0.02 mmol) in (CH3)2CHOH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, yellow blocks of (I) appeared at the boundary. Yield: ~10% (based on L).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
A fragment of a polymeric chain in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data

[FeCl2(C32H22N4)]F(000) = 1208
Mr = 589.29Dx = 1.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2574 reflections
a = 14.519 (3) Åθ = 2.0–27.9°
b = 14.303 (3) ŵ = 0.84 mm1
c = 12.461 (3) ÅT = 293 K
β = 101.94 (3)°Block, yellow
V = 2531.6 (9) Å30.20 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer2218 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = −17→16
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −16→15
Tmin = 0.846, Tmax = 0.882l = −14→14
9515 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0565P)2 + 2.1075P] where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.00001.12084 (4)0.75000.0240 (2)
Cl10.02255 (6)1.20219 (6)0.90773 (8)0.0423 (3)
N20.20786 (16)0.96985 (16)0.63670 (19)0.0186 (6)
N10.10013 (17)1.02547 (17)0.72169 (19)0.0207 (6)
C150.4708 (2)0.8783 (2)0.2868 (2)0.0176 (6)
H150.45160.82160.31150.021*
C110.3788 (2)0.9625 (2)0.4047 (2)0.0181 (6)
C140.4398 (2)0.9609 (2)0.3250 (2)0.0185 (6)
C80.2661 (2)0.9662 (2)0.5587 (2)0.0187 (6)
C130.3223 (2)1.0412 (2)0.5485 (2)0.0183 (6)
H130.32311.09310.59370.022*
C30.1067 (2)0.8921 (2)0.8545 (2)0.0213 (7)
H30.05980.91410.88870.026*
C100.3213 (2)0.8878 (2)0.4174 (3)0.0228 (7)
H100.32120.83510.37360.027*
C10.1466 (2)1.0385 (2)0.6442 (2)0.0203 (7)
H10.13811.09050.59840.024*
C90.2649 (2)0.8892 (2)0.4924 (3)0.0233 (7)
H90.22610.83870.49860.028*
C160.4710 (2)1.0437 (2)0.2859 (2)0.0199 (6)
H160.45141.10050.30980.024*
C70.2006 (2)0.9061 (2)0.7177 (2)0.0171 (6)
C120.3767 (2)1.0395 (2)0.4721 (2)0.0184 (6)
H120.41371.09130.46470.022*
C20.1330 (2)0.9411 (2)0.7698 (2)0.0177 (6)
C50.2242 (2)0.7782 (2)0.8350 (2)0.0245 (7)
H50.25590.72350.86050.029*
C60.2490 (2)0.8247 (2)0.7494 (2)0.0212 (7)
H60.29570.80270.71490.025*
C40.1526 (2)0.8102 (2)0.8854 (2)0.0235 (7)
H40.13600.77500.94120.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0229 (4)0.0202 (4)0.0323 (4)0.0000.0134 (3)0.000
Cl10.0413 (6)0.0368 (5)0.0522 (6)−0.0083 (4)0.0174 (5)−0.0199 (4)
N20.0184 (13)0.0194 (13)0.0205 (13)0.0010 (10)0.0099 (10)0.0014 (10)
N10.0213 (14)0.0203 (14)0.0226 (13)0.0014 (11)0.0097 (11)0.0035 (11)
C150.0176 (16)0.0168 (15)0.0187 (14)−0.0018 (12)0.0041 (12)0.0017 (12)
C110.0186 (16)0.0178 (15)0.0182 (14)0.0007 (12)0.0043 (12)0.0020 (12)
C140.0170 (15)0.0204 (16)0.0185 (14)−0.0008 (12)0.0047 (12)0.0003 (12)
C80.0172 (15)0.0216 (16)0.0192 (14)0.0036 (12)0.0082 (12)0.0026 (12)
C130.0190 (16)0.0155 (15)0.0203 (15)0.0014 (12)0.0041 (12)−0.0030 (12)
C30.0202 (16)0.0266 (17)0.0182 (15)−0.0030 (13)0.0066 (12)−0.0023 (13)
C100.0272 (18)0.0191 (17)0.0253 (16)−0.0050 (13)0.0125 (14)−0.0069 (13)
C10.0193 (16)0.0190 (16)0.0242 (15)0.0009 (13)0.0081 (13)0.0044 (13)
C90.0243 (17)0.0193 (16)0.0281 (17)−0.0046 (13)0.0097 (14)−0.0021 (13)
C160.0224 (16)0.0167 (15)0.0218 (15)−0.0004 (12)0.0074 (12)−0.0023 (12)
C70.0199 (16)0.0134 (14)0.0189 (14)−0.0024 (12)0.0057 (12)0.0013 (12)
C120.0183 (16)0.0171 (15)0.0200 (14)−0.0018 (12)0.0044 (12)0.0004 (12)
C20.0159 (15)0.0170 (15)0.0211 (15)0.0003 (12)0.0058 (12)−0.0011 (12)
C50.0288 (18)0.0147 (16)0.0284 (17)0.0007 (13)0.0018 (14)0.0025 (13)
C60.0203 (16)0.0185 (16)0.0257 (16)0.0001 (13)0.0066 (13)−0.0037 (13)
C40.0315 (18)0.0207 (16)0.0181 (15)−0.0060 (13)0.0048 (13)0.0024 (13)

Geometric parameters (Å, °)

Fe1—N1i2.076 (2)C13—H130.9300
Fe1—N12.076 (2)C3—C41.362 (4)
Fe1—Cl1i2.2489 (10)C3—C21.384 (4)
Fe1—Cl12.2489 (10)C3—H30.9300
N2—C11.342 (4)C10—C91.364 (4)
N2—C71.381 (4)C10—H100.9300
N2—C81.415 (4)C1—H10.9300
N1—C11.300 (4)C9—H90.9300
N1—C21.388 (4)C16—C16ii1.349 (6)
C15—C15ii1.373 (6)C16—H160.9300
C15—C141.383 (4)C7—C61.375 (4)
C15—H150.9300C7—C21.379 (4)
C11—C101.386 (4)C12—H120.9300
C11—C121.389 (4)C5—C61.367 (4)
C11—C141.461 (4)C5—C41.398 (4)
C14—C161.392 (4)C5—H50.9300
C8—C131.368 (4)C6—H60.9300
C8—C91.375 (4)C4—H40.9300
C13—C121.358 (4)
N1i—Fe1—N197.86 (13)C9—C10—C11121.9 (3)
N1i—Fe1—Cl1i120.53 (7)C9—C10—H10119.1
N1—Fe1—Cl1i99.90 (7)C11—C10—H10119.1
N1i—Fe1—Cl199.90 (7)N1—C1—N2113.6 (3)
N1—Fe1—Cl1120.53 (7)N1—C1—H1123.2
Cl1i—Fe1—Cl1117.69 (6)N2—C1—H1123.2
C1—N2—C7106.3 (2)C10—C9—C8119.3 (3)
C1—N2—C8125.0 (2)C10—C9—H9120.4
C7—N2—C8128.6 (2)C8—C9—H9120.4
C1—N1—C2105.1 (2)C16ii—C16—C14121.72 (17)
C1—N1—Fe1121.4 (2)C16ii—C16—H16119.1
C2—N1—Fe1133.50 (19)C14—C16—H16119.1
C15ii—C15—C14121.33 (17)C6—C7—C2122.9 (3)
C15ii—C15—H15119.3C6—C7—N2131.2 (3)
C14—C15—H15119.3C2—C7—N2105.9 (2)
C10—C11—C12117.0 (3)C13—C12—C11121.8 (3)
C10—C11—C14122.0 (3)C13—C12—H12119.1
C12—C11—C14121.0 (3)C11—C12—H12119.1
C15—C14—C16117.0 (3)C7—C2—C3120.7 (3)
C15—C14—C11122.2 (3)C7—C2—N1109.1 (2)
C16—C14—C11120.8 (3)C3—C2—N1130.2 (3)
C13—C8—C9120.3 (3)C6—C5—C4122.1 (3)
C13—C8—N2119.2 (3)C6—C5—H5118.9
C9—C8—N2120.5 (3)C4—C5—H5118.9
C12—C13—C8119.7 (3)C5—C6—C7115.8 (3)
C12—C13—H13120.1C5—C6—H6122.1
C8—C13—H13120.1C7—C6—H6122.1
C4—C3—C2117.1 (3)C3—C4—C5121.3 (3)
C4—C3—H3121.5C3—C4—H4119.3
C2—C3—H3121.5C5—C4—H4119.3
N1i—Fe1—N1—C1139.0 (3)N2—C8—C9—C10179.6 (3)
Cl1i—Fe1—N1—C116.0 (2)C15—C14—C16—C16ii−0.1 (5)
Cl1—Fe1—N1—C1−114.6 (2)C11—C14—C16—C16ii178.6 (3)
N1i—Fe1—N1—C2−40.2 (2)C1—N2—C7—C6−177.4 (3)
Cl1i—Fe1—N1—C2−163.2 (3)C8—N2—C7—C63.3 (5)
Cl1—Fe1—N1—C266.2 (3)C1—N2—C7—C20.4 (3)
C15ii—C15—C14—C16−0.3 (5)C8—N2—C7—C2−178.9 (3)
C15ii—C15—C14—C11−179.0 (3)C8—C13—C12—C11−1.3 (4)
C10—C11—C14—C15−23.9 (4)C10—C11—C12—C131.1 (4)
C12—C11—C14—C15155.5 (3)C14—C11—C12—C13−178.3 (3)
C10—C11—C14—C16157.5 (3)C6—C7—C2—C3−3.6 (5)
C12—C11—C14—C16−23.2 (4)N2—C7—C2—C3178.3 (3)
C1—N2—C8—C1353.0 (4)C6—C7—C2—N1177.6 (3)
C7—N2—C8—C13−127.8 (3)N2—C7—C2—N1−0.5 (3)
C1—N2—C8—C9−125.7 (3)C4—C3—C2—C72.0 (4)
C7—N2—C8—C953.5 (4)C4—C3—C2—N1−179.4 (3)
C9—C8—C13—C120.3 (4)C1—N1—C2—C70.4 (3)
N2—C8—C13—C12−178.4 (3)Fe1—N1—C2—C7179.6 (2)
C12—C11—C10—C90.1 (5)C1—N1—C2—C3−178.3 (3)
C14—C11—C10—C9179.5 (3)Fe1—N1—C2—C31.0 (5)
C2—N1—C1—N2−0.1 (3)C4—C5—C6—C71.4 (4)
Fe1—N1—C1—N2−179.48 (19)C2—C7—C6—C51.8 (4)
C7—N2—C1—N1−0.2 (3)N2—C7—C6—C5179.3 (3)
C8—N2—C1—N1179.1 (3)C2—C3—C4—C51.1 (4)
C11—C10—C9—C8−1.2 (5)C6—C5—C4—C3−2.9 (5)
C13—C8—C9—C100.9 (5)

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5310).

References

  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318–323.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography