PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o709.
Published online 2010 February 27. doi:  10.1107/S1600536809055263
PMCID: PMC2983571

1-(4-Chloro­phen­yl)-3-phenyl-1H-pyrazol-5(4H)-one

Abstract

In the crystal of the title compound, C15H11ClN2O, the molecules are linked by C—H(...)O and weak C—H(...)π inter­actions. The chloro­phenyl and phenyl rings are twisted with respect to the central pyrazolone ring, making dihedral angles of 18.23 (8) and 8.35 (8)°, respectively. The N—N and C=O bond lengths are comparable to those reported for pyrazolone compounds.

Related literature

For the properties and applications of pyrazolones and their derivatives, see: Bao et al. (2006 [triangle]); Bose et al. (2005 [triangle]); Ito et al. (2001 [triangle]); Li et al. (2000 [triangle]); Shi, et al. (2005 [triangle]); Whitaker (1995 [triangle]). For the synthesis, see: Jensen (1959 [triangle]). For related structures, see: Bovio et al. (1974 [triangle]); Dardonville et al. (1998 [triangle]); Ferretti et al. (1985 [triangle]); Holzer et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o709-scheme1.jpg

Experimental

Crystal data

  • C15H11ClN2O
  • M r = 270.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o709-efi1.jpg
  • a = 11.2593 (4) Å
  • b = 12.1848 (4) Å
  • c = 9.5498 (3) Å
  • β = 103.053 (1)°
  • V = 1276.31 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.32 × 0.28 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • 17039 measured reflections
  • 3172 independent reflections
  • 2578 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.111
  • S = 1.04
  • 3172 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Comparison of C=O and N—N bond lengths (Å) between the title compound and reported pyrazolone compounds.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055263/dn2522sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055263/dn2522Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University

supplementary crystallographic information

Comment

Pyrazolones and their derivatives constitute a group of organic compounds that have been extensively studied due to their diverse properties and applications. For example, many more applications have been devised for this group of molecules in the pharmaceutical field. Moreover, they have been applied to the solvent extraction of metal ions (Bose et al., 2005), for analytical purposes (Ito et al., 2001), in the preparation of azo colorants (Whitaker, 1995), as ligands in complexes with catalytic activity (Bao et al., 2006) and in the synthesis of rare earth metal complexes with interesting photophysical properties (Shi et al., 2005). Also, it is important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities (Li et al., 2000). In order to expand this field, the novel title compound (I) has been synthesized, and its crystal structure is reported herein for the first time.

The asymmetric unit of the title compound is built up from a central pyrazolone ring substituted in 1,3 by a 4-chlorophenyl and a phenyl rings (Fig. 1). The chlorophenyl and phenyl rings are slightly twisted with respect to the central pyrazolone ring making dihedral angles of 18.23 (8)° and 8.35 (8)° respectively, thus indicating a high degree of conjugation and electron delocalization.The N(1)–N(2) and C(7)=O(1) distances are comparable, within experimental errors, with related pyrazolones reported in the literature (Table 2).

The cohesion of the crystal is assured by weak C-H···O and C-H···π interactions (Table 1).

Experimental

All reagents were obtained from commercial sources and used without further purification. 1-(4-chlorophenyl)-3-phenyl-1H-pyrazol-5(4H)-one was synthesized according to the method proposed by Jensen (1959). (yield 84.5%; m.p. 435–436 K). Analysis required for C15H11ClN2O: C 66.55%, H 4.10%, N10.35%; found: C 66.51, H 4.08, N 10.41%. Block-like golden single crystals of CPP were grown from ethanol by slow evaporation over a period of several weeks.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl and 0.97 Å for methylene, and treated as riding with Uiso(H) =1.2Ueq (C) .

Figures

Fig. 1.
The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).

Crystal data

C15H11ClN2OF(000) = 560.0
Mr = 270.71Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8730 reflections
a = 11.2593 (4) Åθ = 2.5–28.4°
b = 12.1848 (4) ŵ = 0.29 mm1
c = 9.5498 (3) ÅT = 296 K
β = 103.053 (1)°Block, yellow
V = 1276.31 (7) Å30.32 × 0.28 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2578 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 28.4°, θmin = 1.9°
[var phi] and ω scansh = −14→15
17039 measured reflectionsk = −15→16
3172 independent reflectionsl = −12→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3591P] where P = (Fo2 + 2Fc2)/3
3172 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.49588 (4)0.36865 (4)0.10838 (4)0.06295 (16)
N20.73364 (11)0.53865 (9)0.68321 (12)0.0405 (3)
N10.75985 (10)0.46368 (9)0.79773 (12)0.0396 (3)
C70.76387 (14)0.64516 (11)0.72628 (15)0.0442 (3)
C80.82119 (14)0.63688 (11)0.88421 (15)0.0434 (3)
H8A0.90600.65930.90470.052*
H8B0.77770.68110.94070.052*
C10.67906 (12)0.49854 (11)0.54432 (14)0.0380 (3)
C40.56921 (13)0.41944 (13)0.27598 (14)0.0445 (3)
O10.74620 (13)0.72658 (9)0.65145 (12)0.0620 (3)
C50.56870 (15)0.35700 (12)0.39612 (16)0.0491 (3)
H50.53170.28830.38660.059*
C100.85009 (12)0.46390 (11)1.05204 (14)0.0392 (3)
C90.80911 (12)0.51759 (11)0.91237 (14)0.0375 (3)
C30.62544 (16)0.51956 (13)0.28785 (16)0.0538 (4)
H30.62600.56070.20600.065*
C150.82395 (14)0.35388 (12)1.07152 (17)0.0476 (3)
H150.77870.31350.99520.057*
C60.62340 (13)0.39676 (12)0.53086 (15)0.0448 (3)
H60.62280.35510.61230.054*
C110.91727 (14)0.52294 (13)1.16804 (15)0.0481 (3)
H110.93400.59671.15690.058*
C130.93286 (17)0.36390 (16)1.31805 (18)0.0617 (4)
H130.96060.33041.40690.074*
C20.68150 (16)0.55939 (13)0.42195 (16)0.0531 (4)
H20.72090.62700.43030.064*
C120.95927 (16)0.47258 (15)1.29984 (16)0.0582 (4)
H121.00540.51221.37630.070*
C140.86514 (16)0.30462 (15)1.20418 (18)0.0594 (4)
H140.84720.23131.21680.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0769 (3)0.0676 (3)0.0378 (2)0.0076 (2)−0.00071 (18)−0.01026 (16)
N20.0514 (6)0.0331 (5)0.0348 (5)−0.0008 (5)0.0052 (5)0.0022 (4)
N10.0474 (6)0.0345 (6)0.0352 (5)−0.0001 (5)0.0058 (5)0.0031 (4)
C70.0551 (8)0.0358 (7)0.0416 (7)−0.0025 (6)0.0108 (6)−0.0011 (5)
C80.0559 (8)0.0347 (7)0.0392 (7)−0.0025 (6)0.0101 (6)−0.0032 (5)
C10.0415 (7)0.0371 (7)0.0347 (6)0.0030 (5)0.0071 (5)−0.0001 (5)
C40.0479 (7)0.0494 (8)0.0342 (6)0.0093 (6)0.0053 (5)−0.0045 (6)
O10.0983 (9)0.0359 (5)0.0487 (6)−0.0051 (5)0.0098 (6)0.0068 (5)
C50.0574 (9)0.0413 (7)0.0435 (7)−0.0040 (6)0.0007 (6)−0.0003 (6)
C100.0409 (7)0.0420 (7)0.0354 (6)0.0008 (5)0.0100 (5)0.0003 (5)
C90.0408 (6)0.0354 (6)0.0369 (6)−0.0001 (5)0.0099 (5)−0.0018 (5)
C30.0736 (10)0.0533 (9)0.0353 (7)−0.0010 (7)0.0141 (7)0.0050 (6)
C150.0506 (8)0.0447 (8)0.0452 (7)−0.0065 (6)0.0059 (6)0.0028 (6)
C60.0535 (8)0.0408 (7)0.0370 (7)−0.0022 (6)0.0035 (6)0.0048 (5)
C110.0593 (9)0.0468 (8)0.0380 (7)−0.0041 (6)0.0106 (6)−0.0038 (6)
C130.0682 (10)0.0733 (12)0.0418 (8)0.0019 (8)0.0088 (7)0.0161 (7)
C20.0733 (10)0.0446 (8)0.0422 (7)−0.0109 (7)0.0144 (7)0.0013 (6)
C120.0662 (10)0.0706 (11)0.0355 (7)−0.0048 (8)0.0067 (7)−0.0033 (7)
C140.0665 (10)0.0543 (9)0.0559 (9)−0.0069 (8)0.0106 (8)0.0155 (7)

Geometric parameters (Å, °)

Cl1—C41.7406 (14)C10—C111.3923 (19)
N2—C71.3806 (17)C10—C151.394 (2)
N2—N11.4042 (15)C10—C91.4635 (18)
N2—C11.4169 (16)C3—C21.382 (2)
N1—C91.2897 (17)C3—H30.9300
C7—O11.2126 (17)C15—C141.384 (2)
C7—C81.504 (2)C15—H150.9300
C8—C91.4900 (18)C6—H60.9300
C8—H8A0.9700C11—C121.384 (2)
C8—H8B0.9700C11—H110.9300
C1—C61.3824 (19)C13—C121.377 (3)
C1—C21.3894 (19)C13—C141.382 (3)
C4—C31.367 (2)C13—H130.9300
C4—C51.378 (2)C2—H20.9300
C5—C61.383 (2)C12—H120.9300
C5—H50.9300C14—H140.9300
C7—N2—N1112.65 (11)N1—C9—C8112.52 (11)
C7—N2—C1128.96 (11)C10—C9—C8125.29 (12)
N1—N2—C1118.37 (10)C4—C3—C2119.75 (14)
C9—N1—N2107.72 (11)C4—C3—H3120.1
O1—C7—N2126.65 (14)C2—C3—H3120.1
O1—C7—C8128.47 (13)C14—C15—C10120.14 (15)
N2—C7—C8104.88 (11)C14—C15—H15119.9
C9—C8—C7102.15 (11)C10—C15—H15119.9
C9—C8—H8A111.3C1—C6—C5119.88 (13)
C7—C8—H8A111.3C1—C6—H6120.1
C9—C8—H8B111.3C5—C6—H6120.1
C7—C8—H8B111.3C12—C11—C10120.47 (15)
H8A—C8—H8B109.2C12—C11—H11119.8
C6—C1—C2119.68 (13)C10—C11—H11119.8
C6—C1—N2119.22 (12)C12—C13—C14119.98 (15)
C2—C1—N2121.10 (12)C12—C13—H13120.0
C3—C4—C5120.84 (13)C14—C13—H13120.0
C3—C4—Cl1120.53 (11)C3—C2—C1120.03 (14)
C5—C4—Cl1118.63 (12)C3—C2—H2120.0
C4—C5—C6119.79 (14)C1—C2—H2120.0
C4—C5—H5120.1C13—C12—C11120.14 (16)
C6—C5—H5120.1C13—C12—H12119.9
C11—C10—C15118.94 (13)C11—C12—H12119.9
C11—C10—C9119.80 (13)C13—C14—C15120.32 (16)
C15—C10—C9121.26 (13)C13—C14—H14119.8
N1—C9—C10122.18 (12)C15—C14—H14119.8
C7—N2—N1—C9−1.81 (16)C15—C10—C9—C8173.39 (14)
C1—N2—N1—C9179.69 (11)C7—C8—C9—N11.93 (16)
N1—N2—C7—O1−176.48 (15)C7—C8—C9—C10−179.50 (13)
C1—N2—C7—O11.8 (3)C5—C4—C3—C2−0.7 (2)
N1—N2—C7—C82.95 (16)Cl1—C4—C3—C2178.94 (13)
C1—N2—C7—C8−178.75 (13)C11—C10—C15—C14−0.4 (2)
O1—C7—C8—C9176.62 (16)C9—C10—C15—C14179.13 (14)
N2—C7—C8—C9−2.79 (15)C2—C1—C6—C5−1.1 (2)
C7—N2—C1—C6−160.62 (14)N2—C1—C6—C5179.36 (13)
N1—N2—C1—C617.60 (18)C4—C5—C6—C1−0.5 (2)
C7—N2—C1—C219.9 (2)C15—C10—C11—C121.2 (2)
N1—N2—C1—C2−161.90 (13)C9—C10—C11—C12−178.37 (13)
C3—C4—C5—C61.4 (2)C4—C3—C2—C1−1.0 (3)
Cl1—C4—C5—C6−178.24 (12)C6—C1—C2—C31.9 (2)
N2—N1—C9—C10−178.86 (11)N2—C1—C2—C3−178.65 (14)
N2—N1—C9—C8−0.24 (15)C14—C13—C12—C110.6 (3)
C11—C10—C9—N1171.35 (13)C10—C11—C12—C13−1.3 (3)
C15—C10—C9—N1−8.2 (2)C12—C13—C14—C150.2 (3)
C11—C10—C9—C8−7.1 (2)C10—C15—C14—C13−0.3 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.403.3115 (19)156
C8—H8A···Cg1ii0.972.763.5026 (17)134

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, −y+1, −z+2.

Table 2 Comparison of C═O and N—N bond lengths (Å) between the title compound and reported pyrazolone compounds.

CompoundC═ON—N
C13H14N2O2a1.313 (2)1.395 (2)
C19H16N2O2a1.261 (2)1.404 (2)
C15H12N2O2Sa1.246 (2)1.373 (2)
C22H15ClN2Oc1.228 (2)1.405 (2)
C16H11N3Oc1.252 (3)1.412 (4)
C16H10ClN3Oc1.250 (5)1.420 (5)
C10H8N4O5d1.207 (3)1.412 (2)
C15H11ClN2Oe1.213 (2)1.404 (2)

Notes: (a) Holzer et al. (1999); (b) Bovio et al. (1974); (c) Ferretti et al. (1985); (d) Dardonville et al. (1998); (e) this work.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2522).

References

  • Bao, F., Lu, X., Kang, B.-S. & Wu, Q. (2006). Eur. Polym. J.42, 928–934.
  • Bose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem.265, 115–122.
  • Bovio, B. & Locchi, S. (1974). J. Cryst. Mol. Struct.4, 129–140.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dardonville, C., Elguero, J., Rozas, I., Fernández-Castao, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem.22, 1421–1430.
  • Ferretti, V., Bertolasi, V., Gilli, G. & Borea, P. A. (1985). Acta Cryst. C41, 107–110.
  • Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.
  • Ito, T., Goto, C. & Noguchi, K. (2001). Anal. Chim. Acta, 443, 41–51.
  • Jensen, B. S. (1959). Acta Chem. Scand 13,1668–1670.
  • Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, M., Li, F.-Y., Yi, T., Zhang, D.-Q., Hu, H.-M. & Huang, C.-H. (2005). Inorg. Chem.44, 8929–8936. [PubMed]
  • Whitaker, A. (1995). J. Soc. Dyers Colour.111, 66–72.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography