PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m328–m329.
Published online 2010 February 24. doi:  10.1107/S160053681000615X
PMCID: PMC2983568

Bis{N,N,N-trimethyl-2-oxo-2-[2-(2,3,4- trihydroxy­benzyl­idene)hydrazin­yl]ethanaminium} tetra­chlorido­zincate(II) methanol solvate1

Abstract

The asymmetric unit of the title compound, (C12H18N3O4)2[ZnCl4]·CH3OH, consists of two Girard reagent-based cations, a tetra­chlorido­zincate anion and a mol­ecule of methanol as solvate. These components are inter­connected in the crystal structure by an extensive network of O—H(...)O, N—H(...)O, C—H(...)O, O—H(...)N, O—H(...)Cl, N—H(...)Cl and C—H(...)Cl hydrogen bonds. The shortest inter­molecular inter­action is realized between the cation and anion [H(...)Cl = 2.29 (5) Å; O—H(...)Cl = 167 (3)°]. C—H(...)O inter­actions also play a important role in the inter­connection of the cations.

Related literature

For the crystal structures of the related Girard reagent-based ligands and coordination compounds, see: Leovac et al. (2006 [triangle], 2007 [triangle]); Vojinović et al. (2004 [triangle]) and references therein; Vojinović-Ješić et al. (2008 [triangle], 2010 [triangle]); Revenko et al. (2009 [triangle]). For the crystal structures containing the tetra­chlorido­zincate ion, see: Jin et al. (2005 [triangle]); Valkonen et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m328-scheme1.jpg

Experimental

Crystal data

  • (C12H18N3O4)2[ZnCl4]·CH4O
  • M r = 775.82
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m328-efi1.jpg
  • a = 9.471 (3) Å
  • b = 13.389 (4) Å
  • c = 14.986 (5) Å
  • α = 110.90 (4)°
  • β = 94.91 (4)°
  • γ = 103.94 (5)°
  • V = 1691.9 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 295 K
  • 0.33 × 0.21 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 7056 measured reflections
  • 6632 independent reflections
  • 5226 reflections with I > 2σ(I)
  • R int = 0.017
  • 3 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.128
  • S = 1.05
  • 6632 reflections
  • 440 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PLATON (Spek, 2009 [triangle]) and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000615X/rk2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000615X/rk2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (Project No 142028) and Provincial Secretariat for Science and Technological Development of Vojvodina.

supplementary crystallographic information

Comment

The Schiff base derivatives of Girard reagent are recently investigated as ligands in coordination chemistry (Vojinović et al., 2004 and references therein; Leovac et al., 2006, 2007; Revenko et al., 2009; Vojinović-Ješić et al., 2008, 2010). Considering the specific distribution of charge and simultaneous presence of several donor and acceptor atoms these compounds are able to build extensive hydrogen bonding networks consisting of various types of interactions.

The asymmetric unit of the title compound is given in Fig. 1. Two crystallographically independent cations (A and B) display very similar geometry. The bond lengths and angles within the aliphatic parts of the cations are consistent with those of two previously reported Girard-T based hydrazones (Leovac et al., 2007; Revenko et al., 2009).

Excluding the quaternary ammonium groups, non-hydrogen atoms of two cations (A and B) lie in plane, i.e. the root-mean-square deviations of fitted atoms 0.1Å or less. These approximately planar forms of the molecules are stabilized by number of intramolecular hydrogen bonds with the shortest being O4—H4···N1 (see Table 1). The C9—N3 bonds are single and allow for free rotation of the N(CH3)3) moiety (as was observed in complexes (Leovac et al., 2007), yet in each of the cations the deviation of the quaternary ammonium groups is restrained due to intramolecular C—H···O interactions.

Anion (ZnCl4)2- exhibits regular tetrahedral geometry with Zn—Cl distances comparable to similar anions (Jin et al., 2005; Valkonen et al., 2006). Through O—H···Cl, N—H···Cl and C—H···Cl hydrogen bonds the anion intermediates between five different cations. The strongest among these interactions is rather short and directional O5A—H5A···Cl2i (symmetry code: (i) -x, -y+1, -z) (see Table 1). It is worth noticing that the hydroxyl hydrogen involved in this interaction is the only one (from the six in totals) which significantly deviates from the trihydroxybenzyl moiety.

In the crystal packing, centrosymmetrically related cationic molecules, by C—H···O interactions, with H···O distances all shorter than 2.7Å, associate into corresponding AA and BB dimers. The distances between the parallel planes (passing trough all atoms except N(CH3)3) are 3.386 (8) and 3.194 (7)Å for AA and BB dimers respectively. The pairs of AA and BB dimers further arrange in approximately parallel fashion (angle between planes of A and B molecule is 0.92 (8)°) along the c axis with the closest distance between non-H atoms of 3.407 (5)Å (Fig. 2.). The C—H···O hydrogen interactions relating the dimers mainly include the methyl groups from the quaternary ammonium fragment and oxygen O6 which is in para-position concerning the aliphatic fragment.

Experimental

To a warm solution of L (L = [(CH3)3NCH2C(O)NHNCHC6H2(OH)3]+ Cl-) (0.15 g, 0.5 mmol) in MeOH (5 ml) was added a solution ZnCl2 (anhydrous) (0.07 g, 0.5 mmol) in MeOH (3 ml). The reaction mixture was refluxed for 45 min. After two days the resulting light-green crystals have been filtered and washed with methanol and ether (yield 37%).

Refinement

The H atoms bonded to O atoms of trihydroxybenzyl groups and H atoms bonded to N2 atoms (cations A and B) were located in difference map and refined isotropically. C-bound H atoms were placed in calculated positions (C—H 0.93Å, 0.96Å & 0.97Å) and refined as riding, with Uiso(H) = 1.2(or 1.5)Ueq(C). The refinement of the methanol H resulted in unrealistic positional and thermal parameters, therefore the position of this atom was determined geometrically - O7—H7=0.82Å and Uiso(H7) equal to 1.5Ueq(O7).

Figures

Fig. 1.
The molecular structure of title compound with atom labels. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H-bonds are indicated as dashed lines.
Fig. 2.
The packing diagram of title compound shows the intermolecular H-bonds (dashed lines). H atoms not involved in intermolecular H-bonds are omitted for clarity.

Crystal data

(C12H18N3O4)2[ZnCl4]·CH4OZ = 2
Mr = 775.82F(000) = 804
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.471 (3) ÅCell parameters from 25 reflections
b = 13.389 (4) Åθ = 11.5–19.4°
c = 14.986 (5) ŵ = 1.10 mm1
α = 110.90 (4)°T = 295 K
β = 94.91 (4)°Prism, light-green
γ = 103.94 (5)°0.33 × 0.21 × 0.18 mm
V = 1691.9 (12) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.017
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.5°
graphiteh = 0→11
ω/2θ–scansk = −16→16
7056 measured reflectionsl = −18→18
6632 independent reflections3 standard reflections every 60 min
5226 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0754P)2 + 0.7588P] where P = (Fo2 + 2Fc2)/3
6632 reflections(Δ/σ)max = 0.001
440 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.12662 (4)0.97209 (3)0.27361 (2)0.03615 (12)
Cl10.08234 (9)0.87169 (6)0.36739 (6)0.0457 (2)
Cl2−0.02229 (10)0.86775 (8)0.12557 (6)0.0582 (2)
Cl30.07728 (10)1.13575 (7)0.34252 (7)0.0550 (2)
Cl40.36959 (9)0.99260 (7)0.25977 (7)0.0542 (2)
O1A0.3976 (3)0.5823 (2)0.2618 (2)0.0630 (7)
O4A0.0152 (3)0.3662 (2)0.11211 (17)0.0436 (5)
O5A−0.2207 (3)0.1888 (2)−0.00766 (19)0.0516 (6)
O6A−0.4465 (3)0.2247 (2)−0.10178 (19)0.0547 (6)
O1B0.6208 (3)0.44499 (19)0.23238 (19)0.0510 (6)
O4B0.9987 (2)0.63770 (19)0.40319 (17)0.0425 (5)
O5B1.2379 (3)0.80292 (19)0.52686 (19)0.0508 (6)
O6B1.4654 (3)0.7511 (2)0.60703 (17)0.0484 (6)
N1A0.1257 (3)0.5816 (2)0.19456 (18)0.0365 (5)
N2A0.2344 (3)0.6776 (2)0.25321 (19)0.0382 (6)
N3A0.6305 (3)0.7890 (2)0.36455 (18)0.0427 (6)
N1B0.8729 (2)0.4242 (2)0.31181 (16)0.0327 (5)
N2B0.7550 (3)0.3346 (2)0.25584 (18)0.0336 (5)
N3B0.3590 (3)0.2561 (2)0.14515 (17)0.0354 (5)
C1A0.3662 (3)0.6692 (3)0.2858 (2)0.0390 (6)
C2A0.0097 (3)0.5939 (3)0.1539 (2)0.0365 (6)
H2A0.00150.66510.16550.044*
C3A−0.1076 (3)0.4967 (2)0.0901 (2)0.0340 (6)
C4A−0.1013 (3)0.3874 (3)0.0709 (2)0.0338 (6)
C5A−0.2159 (3)0.2969 (3)0.0080 (2)0.0373 (6)
C6A−0.3357 (3)0.3144 (3)−0.0383 (2)0.0402 (7)
C7A−0.3442 (3)0.4209 (3)−0.0204 (2)0.0424 (7)
H7A−0.42530.4316−0.05130.051*
C8A−0.2319 (3)0.5109 (3)0.0430 (2)0.0395 (7)
H9A−0.23810.58270.05530.047*
C9A0.4695 (3)0.7812 (3)0.3546 (3)0.0446 (7)
H9A10.45360.83810.33240.054*
H9A20.44320.79810.41840.054*
C10A0.6698 (4)0.7172 (4)0.4147 (3)0.0652 (11)
H10B0.77380.72450.41960.098*
H10A0.61420.64050.37770.098*
H10C0.64650.74080.47860.098*
C11A0.7131 (5)0.9079 (3)0.4276 (4)0.0787 (14)
H11A0.69050.95600.39750.118*
H11C0.81770.91670.43580.118*
H11B0.68410.92720.49000.118*
C12A0.6778 (5)0.7560 (5)0.2689 (3)0.0796 (14)
H12C0.78160.76220.27840.119*
H12A0.65980.80420.23770.119*
H12B0.62260.68010.22880.119*
C1B0.6326 (3)0.3538 (2)0.2203 (2)0.0338 (6)
C2B0.9820 (3)0.4038 (2)0.3508 (2)0.0329 (6)
H2B0.98090.33030.33780.039*
C3B1.1081 (3)0.4953 (2)0.41539 (19)0.0307 (6)
C4B1.1095 (3)0.6063 (2)0.4389 (2)0.0319 (6)
C5B1.2296 (3)0.6925 (2)0.5024 (2)0.0346 (6)
C6B1.3468 (3)0.6685 (2)0.54445 (19)0.0347 (6)
C7B1.3446 (3)0.5582 (3)0.5228 (2)0.0377 (6)
H7B1.42230.54200.55160.045*
C8B1.2270 (3)0.4731 (2)0.4586 (2)0.0356 (6)
H8B1.22660.39940.44370.043*
C9B0.5121 (3)0.2445 (2)0.1623 (2)0.0368 (6)
H9B20.53820.20950.09970.044*
H9B10.51010.19480.19630.044*
C10B0.3479 (4)0.3179 (3)0.0803 (2)0.0470 (8)
H10D0.37350.27940.01930.071*
H10F0.41480.39210.11080.071*
H10E0.24840.32180.06930.071*
C11B0.2541 (4)0.1409 (3)0.0978 (3)0.0578 (9)
H11D0.27950.10220.03680.087*
H11E0.15490.14530.08680.087*
H11F0.26070.10120.13940.087*
C12B0.3156 (4)0.3150 (3)0.2399 (2)0.0504 (8)
H12D0.21580.31780.22760.076*
H12E0.38130.38960.27110.076*
H12F0.32210.27510.28130.076*
H4B0.940 (4)0.579 (3)0.370 (3)0.051 (11)*
H5B1.166 (6)0.804 (4)0.500 (4)0.085 (17)*
H6B1.454 (5)0.816 (4)0.621 (3)0.075 (15)*
H4A0.075 (5)0.430 (4)0.143 (3)0.070 (14)*
H5A−0.147 (5)0.177 (4)−0.030 (3)0.067 (14)*
H6A−0.427 (6)0.165 (5)−0.114 (4)0.10 (2)*
H2NB0.758 (4)0.276 (3)0.254 (2)0.038 (9)*
H2NA0.212 (4)0.731 (3)0.267 (3)0.044 (11)*
C130.7289 (7)0.0438 (5)0.1584 (4)0.1002 (18)
H13A0.80410.07170.12710.150*
H13B0.63290.03100.12240.150*
H13C0.7380−0.02510.16080.150*
O70.7452 (4)0.1197 (3)0.2501 (3)0.0843 (10)
H7O0.82650.12960.28110.126*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03453 (19)0.03438 (19)0.0375 (2)0.00982 (14)−0.00078 (14)0.01356 (14)
Cl10.0518 (4)0.0427 (4)0.0458 (4)0.0134 (3)0.0046 (3)0.0223 (3)
Cl20.0511 (5)0.0706 (6)0.0384 (4)0.0232 (4)−0.0089 (4)0.0048 (4)
Cl30.0607 (5)0.0396 (4)0.0602 (5)0.0222 (4)−0.0016 (4)0.0122 (4)
Cl40.0351 (4)0.0513 (5)0.0666 (5)0.0088 (3)0.0055 (4)0.0155 (4)
O1A0.0412 (13)0.0405 (13)0.0897 (19)0.0182 (11)−0.0098 (13)0.0062 (13)
O4A0.0375 (11)0.0466 (13)0.0444 (12)0.0177 (10)−0.0002 (10)0.0134 (10)
O5A0.0532 (15)0.0411 (13)0.0540 (14)0.0108 (11)0.0069 (12)0.0139 (11)
O6A0.0368 (12)0.0543 (16)0.0525 (14)0.0054 (11)−0.0063 (10)0.0058 (12)
O1B0.0411 (12)0.0402 (12)0.0673 (15)0.0134 (10)−0.0047 (11)0.0181 (11)
O4B0.0375 (12)0.0382 (12)0.0512 (13)0.0121 (10)−0.0059 (10)0.0194 (11)
O5B0.0522 (14)0.0348 (12)0.0558 (15)0.0079 (10)−0.0105 (12)0.0146 (10)
O6B0.0395 (12)0.0476 (14)0.0423 (12)0.0020 (10)−0.0094 (10)0.0104 (11)
O70.076 (2)0.0651 (19)0.097 (2)0.0241 (16)−0.0165 (17)0.0207 (17)
N1A0.0286 (12)0.0391 (13)0.0355 (13)0.0067 (10)0.0029 (10)0.0103 (10)
N2A0.0276 (12)0.0362 (14)0.0430 (14)0.0110 (11)−0.0006 (10)0.0071 (11)
N3A0.0303 (13)0.0478 (15)0.0376 (13)0.0064 (11)−0.0032 (10)0.0081 (11)
N1B0.0280 (11)0.0372 (12)0.0299 (11)0.0070 (10)0.0008 (9)0.0123 (10)
N2B0.0293 (12)0.0325 (13)0.0351 (12)0.0083 (10)−0.0018 (10)0.0109 (10)
N3B0.0281 (11)0.0474 (14)0.0318 (12)0.0092 (10)0.0002 (9)0.0192 (11)
C1A0.0309 (14)0.0390 (16)0.0417 (16)0.0099 (12)0.0029 (12)0.0108 (13)
C2A0.0346 (15)0.0411 (16)0.0329 (14)0.0120 (12)0.0046 (12)0.0131 (12)
C3A0.0288 (13)0.0432 (16)0.0303 (14)0.0108 (12)0.0056 (11)0.0147 (12)
C4A0.0286 (13)0.0459 (16)0.0292 (13)0.0141 (12)0.0068 (11)0.0149 (12)
C5A0.0355 (15)0.0454 (17)0.0315 (14)0.0123 (13)0.0098 (12)0.0146 (13)
C6A0.0302 (14)0.0538 (18)0.0302 (14)0.0070 (13)0.0049 (11)0.0129 (13)
C7A0.0305 (15)0.061 (2)0.0365 (15)0.0159 (14)0.0002 (12)0.0190 (14)
C8A0.0364 (15)0.0487 (17)0.0365 (15)0.0168 (13)0.0044 (12)0.0177 (13)
C9A0.0315 (15)0.0401 (16)0.0526 (19)0.0124 (13)−0.0024 (13)0.0081 (14)
C10A0.054 (2)0.078 (3)0.064 (2)0.029 (2)−0.0094 (18)0.027 (2)
C11A0.046 (2)0.054 (2)0.096 (3)−0.0037 (18)−0.015 (2)0.003 (2)
C12A0.048 (2)0.129 (4)0.041 (2)0.008 (2)0.0077 (17)0.019 (2)
C1B0.0295 (13)0.0395 (16)0.0304 (13)0.0096 (12)0.0018 (11)0.0126 (12)
C2B0.0329 (14)0.0347 (14)0.0302 (14)0.0123 (11)0.0061 (11)0.0101 (11)
C3B0.0273 (13)0.0377 (14)0.0278 (13)0.0101 (11)0.0057 (10)0.0131 (11)
C4B0.0277 (13)0.0418 (15)0.0299 (13)0.0107 (11)0.0049 (11)0.0182 (12)
C5B0.0359 (15)0.0365 (15)0.0304 (14)0.0079 (12)0.0036 (11)0.0143 (12)
C6B0.0306 (14)0.0435 (16)0.0238 (13)0.0063 (12)0.0030 (11)0.0096 (12)
C7B0.0307 (14)0.0494 (17)0.0338 (14)0.0165 (13)0.0029 (11)0.0148 (13)
C8B0.0365 (15)0.0371 (15)0.0343 (14)0.0156 (12)0.0045 (12)0.0126 (12)
C9B0.0318 (14)0.0387 (15)0.0370 (15)0.0123 (12)−0.0016 (12)0.0121 (12)
C10B0.0419 (17)0.068 (2)0.0420 (17)0.0188 (16)0.0038 (14)0.0324 (16)
C11B0.0422 (18)0.058 (2)0.058 (2)−0.0027 (16)−0.0138 (16)0.0210 (18)
C12B0.0444 (18)0.073 (2)0.0389 (17)0.0214 (17)0.0149 (14)0.0230 (16)
C130.108 (4)0.094 (4)0.089 (4)0.060 (3)0.002 (3)0.009 (3)

Geometric parameters (Å, °)

Zn1—Cl32.2467 (13)O4B—C4B1.357 (3)
Zn1—Cl12.2661 (11)O4B—H4B0.80 (4)
Zn1—Cl22.2731 (18)O5B—C5B1.371 (4)
Zn1—Cl42.2870 (12)O5B—H5B0.77 (5)
O1A—C1A1.208 (4)O6B—C6B1.359 (4)
O4A—C4A1.356 (3)O6B—H6B0.85 (5)
O4A—H4A0.84 (4)N1B—C2B1.276 (4)
O5A—C5A1.369 (4)N1B—N2B1.366 (3)
O5A—H5A0.82 (5)N2B—C1B1.352 (4)
O6A—C6A1.362 (4)N2B—H2NB0.79 (3)
O6A—H6A0.82 (6)N3B—C11B1.493 (4)
N1A—C2A1.285 (4)N3B—C10B1.495 (4)
N1A—N2A1.373 (4)N3B—C12B1.504 (4)
N2A—C1A1.346 (4)N3B—C9B1.506 (4)
N2A—H2NA0.75 (4)C1B—C9B1.523 (4)
N3A—C12A1.484 (5)C2B—C3B1.454 (4)
N3A—C9A1.494 (4)C2B—H2B0.9300
N3A—C11A1.497 (5)C3B—C4B1.396 (4)
N3A—C10A1.505 (5)C3B—C8B1.397 (4)
C1A—C9A1.513 (4)C4B—C5B1.390 (4)
C2A—C3A1.441 (4)C5B—C6B1.389 (4)
C2A—H2A0.9300C6B—C7B1.388 (4)
C3A—C4A1.405 (4)C7B—C8B1.373 (4)
C3A—C8A1.407 (4)C7B—H7B0.9300
C4A—C5A1.382 (4)C8B—H8B0.9300
C5A—C6A1.390 (4)C9B—H9B20.9700
C6A—C7A1.378 (5)C9B—H9B10.9700
C7A—C8A1.371 (5)C10B—H10D0.9600
C7A—H7A0.9300C10B—H10F0.9600
C8A—H9A0.9300C10B—H10E0.9600
C9A—H9A10.9700C11B—H11D0.9600
C9A—H9A20.9700C11B—H11E0.9600
C10A—H10B0.9600C11B—H11F0.9600
C10A—H10A0.9600C12B—H12D0.9600
C10A—H10C0.9600C12B—H12E0.9600
C11A—H11A0.9600C12B—H12F0.9600
C11A—H11C0.9600C13—O71.355 (6)
C11A—H11B0.9600O7—H7O0.8200
C12A—H12C0.9600C13—H13A0.9600
C12A—H12A0.9600C13—H13B0.9600
C12A—H12B0.9600C13—H13C0.9600
O1B—C1B1.203 (4)
Cl3—Zn1—Cl1109.97 (5)H10A—C10A—H10C109.5
Cl3—Zn1—Cl2110.89 (5)N3A—C11A—H11A109.5
Cl1—Zn1—Cl2107.16 (5)N3A—C11A—H11C109.5
Cl3—Zn1—Cl4113.17 (6)H11A—C11A—H11C109.5
Cl1—Zn1—Cl4105.36 (5)N3A—C11A—H11B109.5
Cl2—Zn1—Cl4109.97 (6)H11A—C11A—H11B109.5
C4A—O4A—H4A103 (3)H11C—C11A—H11B109.5
C5A—O5A—H5A108 (3)N3A—C12A—H12C109.5
C6A—O6A—H6A113 (4)N3A—C12A—H12A109.5
C4B—O4B—H4B102 (3)H12C—C12A—H12A109.5
C5B—O5B—H5B106 (4)N3A—C12A—H12B109.5
C6B—O6B—H6B112 (3)H12C—C12A—H12B109.5
C13—O7—H7O109.5H12A—C12A—H12B109.5
C2A—N1A—N2A116.7 (3)O1B—C1B—N2B124.5 (3)
C1A—N2A—N1A118.6 (3)O1B—C1B—C9B124.6 (3)
C1A—N2A—H2NA126 (3)N2B—C1B—C9B110.9 (2)
N1A—N2A—H2NA116 (3)N1B—C2B—C3B120.2 (3)
C12A—N3A—C9A112.0 (3)N1B—C2B—H2B119.9
C12A—N3A—C11A110.4 (3)C3B—C2B—H2B119.9
C9A—N3A—C11A106.7 (3)C4B—C3B—C8B118.9 (3)
C12A—N3A—C10A108.2 (3)C4B—C3B—C2B120.9 (2)
C9A—N3A—C10A112.0 (3)C8B—C3B—C2B120.2 (3)
C11A—N3A—C10A107.4 (3)O4B—C4B—C5B116.0 (3)
C2B—N1B—N2B117.1 (2)O4B—C4B—C3B124.0 (3)
C1B—N2B—N1B118.6 (3)C5B—C4B—C3B120.0 (3)
C1B—N2B—H2NB124 (2)O5B—C5B—C6B117.4 (3)
N1B—N2B—H2NB116 (2)O5B—C5B—C4B122.5 (3)
C11B—N3B—C10B109.3 (2)C6B—C5B—C4B120.1 (3)
C11B—N3B—C12B108.3 (3)O6B—C6B—C7B118.6 (3)
C10B—N3B—C12B109.5 (3)O6B—C6B—C5B121.4 (3)
C11B—N3B—C9B107.3 (2)C7B—C6B—C5B120.1 (3)
C10B—N3B—C9B111.6 (2)C8B—C7B—C6B119.7 (3)
C12B—N3B—C9B110.8 (2)C8B—C7B—H7B120.1
O1A—C1A—N2A123.6 (3)C6B—C7B—H7B120.1
O1A—C1A—C9A124.5 (3)C7B—C8B—C3B121.2 (3)
N2A—C1A—C9A112.0 (3)C7B—C8B—H8B119.4
N1A—C2A—C3A119.6 (3)C3B—C8B—H8B119.4
N1A—C2A—H2A120.2N3B—C9B—C1B114.8 (2)
C3A—C2A—H2A120.2N3B—C9B—H9B2108.6
C4A—C3A—C8A118.3 (3)C1B—C9B—H9B2108.6
C4A—C3A—C2A122.4 (3)N3B—C9B—H9B1108.6
C8A—C3A—C2A119.2 (3)C1B—C9B—H9B1108.6
O4A—C4A—C5A117.7 (3)H9B2—C9B—H9B1107.5
O4A—C4A—C3A122.1 (3)N3B—C10B—H10D109.5
C5A—C4A—C3A120.2 (3)N3B—C10B—H10F109.5
O5A—C5A—C4A122.5 (3)H10D—C10B—H10F109.5
O5A—C5A—C6A117.6 (3)N3B—C10B—H10E109.5
C4A—C5A—C6A119.8 (3)H10D—C10B—H10E109.5
O6A—C6A—C7A119.7 (3)H10F—C10B—H10E109.5
O6A—C6A—C5A119.4 (3)N3B—C11B—H11D109.5
C7A—C6A—C5A121.0 (3)N3B—C11B—H11E109.5
C8A—C7A—C6A119.5 (3)H11D—C11B—H11E109.5
C8A—C7A—H7A120.3N3B—C11B—H11F109.5
C6A—C7A—H7A120.3H11D—C11B—H11F109.5
C7A—C8A—C3A121.3 (3)H11E—C11B—H11F109.5
C7A—C8A—H9A119.4N3B—C12B—H12D109.5
C3A—C8A—H9A119.4N3B—C12B—H12E109.5
N3A—C9A—C1A115.2 (3)H12D—C12B—H12E109.5
N3A—C9A—H9A1108.5N3B—C12B—H12F109.5
C1A—C9A—H9A1108.5H12D—C12B—H12F109.5
N3A—C9A—H9A2108.5H12E—C12B—H12F109.5
C1A—C9A—H9A2108.5O7—C13—H13A109.5
H9A1—C9A—H9A2107.5O7—C13—H13B109.5
N3A—C10A—H10B109.5H13A—C13—H13B109.5
N3A—C10A—H10A109.5O7—C13—H13C109.5
H10B—C10A—H10A109.5H13A—C13—H13C109.5
N3A—C10A—H10C109.5H13B—C13—H13C109.5
H10B—C10A—H10C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4A—H4A···N1A0.84 (5)1.82 (5)2.592 (4)153 (5)
O5A—H5A···Cl2i0.83 (5)2.29 (5)3.094 (4)167 (3)
O6A—H6A···O5A0.82 (7)2.30 (6)2.693 (4)110 (5)
O6A—H6A···Cl4i0.82 (7)2.64 (6)3.317 (3)141 (5)
O4B—H4B···N1B0.80 (4)1.86 (4)2.599 (4)155 (4)
O5B—H5B···O4B0.77 (6)2.28 (6)2.721 (4)118 (5)
O5B—H5B···Cl1ii0.77 (6)2.60 (5)3.217 (3)139 (5)
O6B—H6B···O5B0.85 (5)2.32 (5)2.728 (4)110 (4)
O6B—H6B···Cl4iii0.85 (5)2.59 (5)3.193 (3)129 (4)
C10A—H10A···O1A0.962.342.992 (5)124
C10B—H10F···O1B0.962.332.978 (4)124
C10B—H10E···O4A0.962.503.404 (5)157
C10B—H10F···O1B0.962.332.978 (4)124
C12A—H12A···O6Ai0.962.603.307 (6)131
C12A—H12B···O1A0.962.413.043 (7)123
C12B—H12E···O1B0.962.403.028 (5)123
C12A—H12C···Cl1ii0.962.833.715 (5)154
O7—H7O···Cl3iv0.822.443.251 (4)169
N2A—H2NA···Cl10.77 (4)2.59 (4)3.287 (3)154 (4)
N2B—H2NB···O70.78 (4)2.05 (4)2.826 (5)175 (4)

Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z; (iii) −x+2, −y+2, −z+1; (iv) x+1, y−1, z.

Footnotes

1Transition metal complexes with Girard reagent-based ligands. Part VI.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2191).

References

  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. [PubMed]
  • Leovac, V. M., Bogdanović, G. A., Češljević, V. I., Jovanović, Lj. S., Novaković, S. B. & Vojinović-Ješić, Lj. S. (2007). Struct. Chem.18, 113–119.
  • Leovac, V. M., Mészáros Szécsényi, K., Vojinović-Ješić, Lj. S., Češljević, V. I., Markov, S. & Wadsten, T. (2006). J. Therm. Anal. Cal.86, 379–384.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Revenko, M. D., Bourosh, P. N., Palamarchuk, O. V., Lipkowski, J., Gdaniec, J. M. & Simonov, Yu. A. (2009). Russ. J. Inorg. Chem.54, 1581–1589.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292. [PubMed]
  • Vojinović, Lj. S., Leovac, V. M., Novaković, S. B., Bogdanović, G. A., Csanadi, J. J. & Češljević, V. I. (2004). Inorg. Chem. Commun.7, 1264–1268.
  • Vojinović-Ješić, Lj. S., Bogdanović, G. A., Leovac, V. M., Češljević, V. I. & Jovanović, Lj. S. (2008). Struct. Chem.19, 807–815.
  • Vojinović-Ješić, Lj. S., Češljević, V. I., Bogdanović, G. A., Leovac, V. M., Mészáros Szécsényi, K., Divjaković, V. & Joksović, M. D. (2010). Inorg. Chem. Commun. Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography