PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m318.
Published online 2010 February 20. doi:  10.1107/S160053681000632X
PMCID: PMC2983567

Poly[[aqua­[μ-1,4-bis­(3-pyridylmeth­yl)piperazine-κ2 N:N′](μ-isophthalato-κ2 O 1:O 3)copper(II)]

Abstract

In the title compound, [Cu(C8H4O4)(C16H20N4)(H2O)]n, square-pyramidally coordinated CuII ions are linked into [Cu(H2O)(isophthalate)]n coordination polymer chains by isophthalate dianions. These chains are connected into undulating [Cu(H2O)(isophthalate)(3-bpmp)]n [3-bmp is bis­(3-pyridylmeth­yl)piperazine] layers by 3-bpmp tethering ligands. The pseudo three-dimensional structure of the title compound is fostered by inter­layer O—H(...)O hydrogen bonding between the aqua ligands and unligated isophthalate O atoms. The selected crystal was non-merohedrally twinned. Only reflections from the major twin component were used in the solution and refinement.

Related literature

For other divalent copper aromatic dicarboxyl­ate coordination polymers containing bis­(3-pyridylmeth­yl)piperazine, see: Johnston et al. (2008 [triangle]). For the synthesis of bis­(3-pyridyl­meth­yl)piperazine, see: Pocic et al. (2005 [triangle]). The twin law was determined using CELLNOW (Sheldrick, 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m318-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H4O4)(C16H20N4)(H2O)]
  • M r = 514.03
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m318-efi1.jpg
  • a = 6.9122 (4) Å
  • b = 10.0328 (5) Å
  • c = 16.7456 (9) Å
  • α = 86.822 (1)°
  • β = 84.210 (1)°
  • γ = 80.771 (1)°
  • V = 1139.49 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.00 mm−1
  • T = 173 K
  • 0.34 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2003 [triangle]) T min = 0.729, T max = 0.850
  • 31818 measured reflections
  • 4141 independent reflections
  • 3681 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.117
  • S = 1.16
  • 4141 reflections
  • 313 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Crystal Maker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, pub. DOI: 10.1107/S160053681000632X/ng2734sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000632X/ng2734Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work. CMG thanks the Michigan State University Honors College for funding his Professorial Assistantship.

supplementary crystallographic information

Comment

The title compound (I) was prepared by the hydrothermal reaction of copper nitrate, isophthalic acid and bis(3-pyridylmethyl)piperazine (3-bpmp). Its asymmetric unit (Fig. 1) contains a divalent copper atom, an aqua ligand, a fully deprotonated isophthalate ligand, and halves of two crystallographically independent 3-bpmp ligands whose central piperazinyl rings contain crystallographic inversion centers. In contrast to the previously reported phase {[Cu(H2O)(isophthalate)(3-bpmp)].2H2O}n (Johnston, et al., 2008) no water molecules of crystallization are present in the title compound.

The basal plane of the distorted square pyramidal {CuO3N2} coordination sphere contains two trans pyridyl N atom donors from crystallographically distinct 3-bpmp ligands and two trans O atom donors from different isophthalate ligands. The apical position is occupied by the aqua ligand.

Isophthalate ligands in a bis(monodentate) bridging mode link the CuII ions into one-dimensional [Cu(H2O)(isophthalate)]n coordination polymer chains arranged along the b crystal direction. The Cu···Cu distance through the isophthalate ligands measures 10.0328 (5) Å, defining the b lattice parameter. In turn, these chains are connected into undulating [Cu(H2O)(isophthalate)(3-bpmp)]n coordination polymer layers by 3-bpmp tethering ligands (Fig. 2). These layers are arranged parallel to the bc crystal planes. The crystallographically distinct 3-bpmp ligands promote two different through-ligand Cu···Cu contact distances, 12.394 (6) and 12.830 (6) Å. The "wavelength" of the undulations in the layer motifs is 16.7456 (9) Å, which defines the c lattice parameter. Intralayer hydrogen bonding between the aqua ligands and unligated isophthalate O atoms provides additional stabilization of the layer motifs.

Adjacent [Cu(H2O)(isophthalate)(3-bpmp)]n layers stack in an AAA pattern along the a crystal direction. Interlayer hydrogen bonding between the aqua ligands and unligated isophthalate O atoms provides the supramolecular interactions necessary to generate the pseudo three-dimensional structure of the title compound.

Experimental

All starting materials were obtained commercially, except for 3-bpmp, which was prepared according to a literature procedure (Pocic, et al., 2005). A mixture of Cu(NO3)2.2.5H2O (72 mg, 0.30 mmol), isophthalic acid (49 mg, 0.30 mmol), and 3-bpmp (79 mg, 0.30 mmol) and 10.0 g water (550 mmol) was placed into a 15 ml borosilicate glass vial, which was then sealed and heated under autogenous pressure at 363 K for 120 h. Blue-green blocks of the title compound were obtained along with a green polycrystalline material.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom was found in a difference Fourier map, restrained with O—H = 0.85 Å, and refined with Uiso =1.2Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, light blue N, red O, black C. Symmetry codes: (i) x, y, z.
Fig. 2.
Face-on view of the coordination polymer layer motif in the title compound.
Fig. 3.
Stacking diagram for the title compound, viewed down the b axis.

Crystal data

[Cu(C8H4O4)(C16H20N4)(H2O)]Z = 2
Mr = 514.03F(000) = 534
Triclinic, P1Dx = 1.498 Mg m3
a = 6.9122 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0328 (5) ÅCell parameters from 4141 reflections
c = 16.7456 (9) Åθ = 1.2–25.3°
α = 86.822 (1)°µ = 1.00 mm1
β = 84.210 (1)°T = 173 K
γ = 80.771 (1)°Block, blue-green
V = 1139.49 (11) Å30.34 × 0.18 × 0.17 mm

Data collection

Bruker APEXII diffractometer4141 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
graphiteRint = 0.077
ω–[var phi] scansθmax = 25.3°, θmin = 1.2°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2003)h = −8→8
Tmin = 0.729, Tmax = 0.850k = −11→12
31818 measured reflectionsl = 0→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.16w = 1/[σ2(Fo2) + (0.038P)2 + 0.3004P] where P = (Fo2 + 2Fc2)/3
4141 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = −0.56 e Å3

Special details

Experimental. The selected crystal was non-merohedrally twinned. The twin law was determined using CELLNOW (Sheldrick, 2009). Only reflections from the major twin component were used in the solution and refinement.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.06345 (5)0.16501 (3)0.247474 (17)0.03608 (14)
O1−0.2554 (3)0.07048 (19)0.26910 (13)0.0497 (5)
O2−0.0541 (3)−0.64683 (17)0.24333 (11)0.0407 (4)
O30.1918 (3)−0.53485 (19)0.26226 (12)0.0481 (5)
O40.0528 (3)−0.03315 (17)0.25491 (10)0.0378 (4)
O50.3884 (3)0.2070 (2)0.22304 (13)0.0468 (5)
H5A0.489 (4)0.165 (3)0.2398 (18)0.056*
H5B0.362 (5)0.2875 (19)0.2338 (19)0.056*
N1−0.2981 (4)0.4364 (2)−0.00903 (14)0.0450 (6)
N2−0.3058 (4)0.4306 (2)0.50868 (14)0.0459 (6)
N30.0735 (3)0.1569 (2)0.12699 (13)0.0369 (5)
N40.0851 (3)0.1613 (2)0.36631 (13)0.0364 (5)
C1−0.1526 (5)0.3472 (3)0.55036 (17)0.0522 (7)
H1A−0.21470.29880.59670.063*
H1B−0.06970.40630.57150.063*
C2−0.1293 (5)0.3582 (3)−0.05256 (17)0.0543 (8)
H2A−0.03980.4206−0.07630.065*
H2B−0.17540.3150−0.09730.065*
C30.1232 (4)0.1509 (3)−0.03844 (18)0.0516 (7)
H30.14120.1486−0.09540.062*
C4−0.4673 (4)0.3578 (3)0.49701 (18)0.0492 (7)
H4A−0.53190.33220.54980.059*
H4B−0.41500.27410.46830.059*
C50.2344 (4)0.0554 (3)0.00767 (18)0.0505 (7)
H50.3287−0.0133−0.01680.061*
C6−0.4586 (4)0.3589 (3)0.01158 (18)0.0486 (7)
H6A−0.41190.27740.04460.058*
H6B−0.50220.3290−0.03810.058*
C7−0.0140 (4)0.2497 (3)−0.00209 (17)0.0447 (7)
C8−0.3847 (4)0.5539 (3)0.55103 (17)0.0471 (7)
H8A−0.27610.60370.55920.056*
H8B−0.44860.53040.60440.056*
C9−0.3711 (4)0.5567 (3)−0.05738 (17)0.0490 (7)
H9A−0.41370.5290−0.10780.059*
H9B−0.26400.6109−0.07160.059*
C100.1134 (5)0.1464 (3)0.53032 (18)0.0484 (7)
H100.12340.14020.58660.058*
C11−0.0233 (4)0.2453 (3)0.49772 (16)0.0429 (6)
C12−0.3987 (4)−0.1727 (3)0.24824 (15)0.0399 (6)
H12−0.4912−0.09170.24770.048*
C130.2053 (4)0.0623 (3)0.09015 (17)0.0444 (6)
H130.2822−0.00290.12210.053*
C14−0.1298 (4)−0.4115 (3)0.25201 (14)0.0351 (6)
C15−0.3263 (4)−0.4149 (3)0.24274 (17)0.0422 (6)
H15−0.3696−0.49900.23770.051*
C160.2351 (4)0.0567 (3)0.48069 (18)0.0478 (7)
H160.3297−0.01130.50240.057*
C17−0.4595 (4)−0.2960 (3)0.24079 (17)0.0438 (6)
H17−0.5936−0.29920.23430.053*
C18−0.0310 (4)0.2481 (3)0.41507 (16)0.0395 (6)
H18−0.12410.31540.39180.047*
C19−0.1320 (4)−0.0336 (3)0.26089 (15)0.0378 (6)
C20−0.2003 (4)−0.1679 (2)0.25656 (14)0.0339 (5)
C210.2174 (4)0.0674 (3)0.39949 (17)0.0431 (6)
H210.30210.00590.36550.052*
C22−0.0351 (4)0.2482 (3)0.08150 (16)0.0387 (6)
H22−0.13070.31460.10750.046*
C23−0.0687 (4)−0.2874 (3)0.25844 (15)0.0354 (6)
H230.0658−0.28460.26420.042*
C240.0186 (4)−0.5397 (3)0.25266 (14)0.0372 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0415 (2)0.0285 (2)0.0384 (2)−0.00438 (14)−0.00604 (14)−0.00113 (13)
O10.0404 (11)0.0330 (10)0.0747 (14)0.0028 (9)−0.0121 (10)−0.0069 (9)
O20.0470 (11)0.0290 (9)0.0466 (11)−0.0040 (8)−0.0094 (8)−0.0024 (8)
O30.0392 (11)0.0355 (11)0.0691 (13)−0.0008 (8)−0.0099 (9)−0.0049 (9)
O40.0375 (11)0.0304 (9)0.0458 (10)−0.0047 (8)−0.0059 (8)−0.0023 (8)
O50.0368 (11)0.0431 (11)0.0589 (12)0.0013 (9)−0.0076 (9)−0.0044 (10)
N10.0413 (13)0.0499 (14)0.0436 (13)−0.0085 (11)−0.0062 (10)0.0074 (11)
N20.0458 (14)0.0469 (14)0.0449 (13)−0.0048 (11)−0.0044 (10)−0.0075 (11)
N30.0350 (12)0.0339 (12)0.0426 (12)−0.0071 (9)−0.0040 (9)−0.0024 (9)
N40.0352 (12)0.0328 (11)0.0418 (12)−0.0066 (9)−0.0056 (9)0.0016 (9)
C10.0559 (19)0.0586 (19)0.0410 (15)−0.0030 (15)−0.0063 (13)−0.0072 (13)
C20.0533 (19)0.066 (2)0.0407 (16)−0.0018 (16)−0.0055 (13)0.0061 (14)
C30.0456 (17)0.067 (2)0.0419 (16)−0.0055 (15)−0.0038 (13)−0.0053 (14)
C40.0495 (18)0.0454 (16)0.0527 (17)−0.0073 (14)−0.0024 (13)−0.0080 (13)
C50.0420 (16)0.0569 (19)0.0507 (17)−0.0013 (14)−0.0009 (13)−0.0115 (14)
C60.0517 (18)0.0451 (16)0.0506 (16)−0.0115 (14)−0.0112 (13)0.0081 (13)
C70.0392 (15)0.0537 (18)0.0421 (15)−0.0096 (13)−0.0056 (12)0.0015 (13)
C80.0461 (17)0.0499 (17)0.0462 (16)−0.0089 (13)−0.0024 (13)−0.0101 (13)
C90.0476 (17)0.0522 (18)0.0477 (16)−0.0113 (14)−0.0086 (13)0.0127 (13)
C100.0508 (18)0.0531 (18)0.0429 (15)−0.0105 (14)−0.0099 (13)0.0021 (13)
C110.0417 (15)0.0468 (16)0.0413 (15)−0.0095 (13)−0.0055 (12)−0.0004 (12)
C120.0352 (14)0.0391 (15)0.0431 (15)0.0011 (11)−0.0025 (11)−0.0034 (11)
C130.0416 (16)0.0442 (16)0.0472 (16)−0.0043 (12)−0.0062 (12)−0.0029 (12)
C140.0395 (14)0.0354 (14)0.0304 (12)−0.0058 (11)−0.0024 (10)−0.0013 (10)
C150.0434 (16)0.0361 (14)0.0478 (15)−0.0091 (12)−0.0020 (12)−0.0037 (12)
C160.0427 (16)0.0483 (17)0.0521 (17)−0.0059 (13)−0.0116 (13)0.0102 (13)
C170.0337 (14)0.0458 (16)0.0531 (16)−0.0079 (12)−0.0056 (12)−0.0040 (12)
C180.0405 (15)0.0362 (14)0.0412 (14)−0.0047 (12)−0.0045 (11)−0.0001 (11)
C190.0414 (15)0.0341 (14)0.0376 (13)−0.0021 (12)−0.0095 (11)−0.0004 (11)
C200.0380 (14)0.0312 (13)0.0321 (12)−0.0039 (11)−0.0030 (10)−0.0009 (10)
C210.0402 (15)0.0407 (15)0.0476 (15)−0.0033 (12)−0.0045 (12)−0.0018 (12)
C220.0395 (15)0.0373 (14)0.0395 (14)−0.0068 (12)−0.0041 (11)−0.0015 (11)
C230.0350 (14)0.0358 (14)0.0352 (13)−0.0035 (11)−0.0050 (10)−0.0023 (10)
C240.0448 (16)0.0319 (14)0.0338 (13)−0.0031 (12)−0.0028 (11)−0.0012 (10)

Geometric parameters (Å, °)

Cu1—O2i1.9322 (18)C5—H50.9500
Cu1—O41.9978 (18)C6—C9iii1.503 (4)
Cu1—N42.009 (2)C6—H6A0.9900
Cu1—N32.017 (2)C6—H6B0.9900
Cu1—O52.343 (2)C7—C221.392 (4)
O1—C191.242 (3)C8—C4ii1.508 (4)
O2—C241.280 (3)C8—H8A0.9900
O3—C241.233 (3)C8—H8B0.9900
O4—C191.272 (3)C9—C6iii1.503 (4)
O5—H5A0.820 (18)C9—H9A0.9900
O5—H5B0.825 (17)C9—H9B0.9900
N1—C21.451 (4)C10—C161.380 (4)
N1—C61.458 (4)C10—C111.385 (4)
N1—C91.465 (3)C10—H100.9500
N2—C11.452 (4)C11—C181.389 (4)
N2—C81.461 (4)C12—C171.384 (4)
N2—C41.462 (4)C12—C201.401 (4)
N3—C131.337 (4)C12—H120.9500
N3—C221.341 (3)C13—H130.9500
N4—C181.338 (3)C14—C151.389 (4)
N4—C211.342 (3)C14—C231.390 (4)
C1—C111.506 (4)C14—C241.511 (4)
C1—H1A0.9900C15—C171.386 (4)
C1—H1B0.9900C15—H150.9500
C2—C71.513 (4)C16—C211.374 (4)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C17—H170.9500
C3—C71.379 (4)C18—H180.9500
C3—C51.381 (4)C19—C201.505 (4)
C3—H30.9500C20—C231.385 (4)
C4—C8ii1.508 (4)C21—H210.9500
C4—H4A0.9900C22—H220.9500
C4—H4B0.9900C23—H230.9500
C5—C131.380 (4)
O2i—Cu1—O4153.48 (8)C22—C7—C2122.2 (3)
O2i—Cu1—N493.47 (8)N2—C8—C4ii110.0 (2)
O4—Cu1—N489.57 (8)N2—C8—H8A109.7
O2i—Cu1—N391.23 (8)C4ii—C8—H8A109.7
O4—Cu1—N388.28 (8)N2—C8—H8B109.7
N4—Cu1—N3173.41 (8)C4ii—C8—H8B109.7
O2i—Cu1—O595.11 (8)H8A—C8—H8B108.2
O4—Cu1—O5111.24 (7)N1—C9—C6iii110.4 (2)
N4—Cu1—O590.05 (8)N1—C9—H9A109.6
N3—Cu1—O584.93 (8)C6iii—C9—H9A109.6
C24—O2—Cu1iv130.85 (17)N1—C9—H9B109.6
C19—O4—Cu1101.25 (15)C6iii—C9—H9B109.6
Cu1—O5—H5A129 (2)H9A—C9—H9B108.1
Cu1—O5—H5B95 (2)C16—C10—C11119.7 (3)
H5A—O5—H5B116 (3)C16—C10—H10120.1
C2—N1—C6112.3 (2)C11—C10—H10120.1
C2—N1—C9110.0 (2)C10—C11—C18117.2 (3)
C6—N1—C9108.5 (2)C10—C11—C1120.6 (3)
C1—N2—C8111.6 (2)C18—C11—C1122.1 (2)
C1—N2—C4112.1 (2)C17—C12—C20119.7 (2)
C8—N2—C4109.2 (2)C17—C12—H12120.1
C13—N3—C22118.3 (2)C20—C12—H12120.1
C13—N3—Cu1118.38 (18)N3—C13—C5122.7 (3)
C22—N3—Cu1123.13 (18)N3—C13—H13118.7
C18—N4—C21117.8 (2)C5—C13—H13118.7
C18—N4—Cu1122.48 (18)C15—C14—C23119.1 (2)
C21—N4—Cu1119.72 (18)C15—C14—C24121.1 (2)
N2—C1—C11113.3 (2)C23—C14—C24119.8 (2)
N2—C1—H1A108.9C17—C15—C14120.2 (3)
C11—C1—H1A108.9C17—C15—H15119.9
N2—C1—H1B108.9C14—C15—H15119.9
C11—C1—H1B108.9C21—C16—C10119.0 (3)
H1A—C1—H1B107.7C21—C16—H16120.5
N1—C2—C7114.5 (2)C10—C16—H16120.5
N1—C2—H2A108.6C12—C17—C15120.6 (3)
C7—C2—H2A108.6C12—C17—H17119.7
N1—C2—H2B108.6C15—C17—H17119.7
C7—C2—H2B108.6N4—C18—C11123.7 (2)
H2A—C2—H2B107.6N4—C18—H18118.2
C7—C3—C5120.2 (3)C11—C18—H18118.2
C7—C3—H3119.9O1—C19—O4123.2 (3)
C5—C3—H3119.9O1—C19—C20119.6 (2)
N2—C4—C8ii109.8 (2)O4—C19—C20117.2 (2)
N2—C4—H4A109.7C23—C20—C12119.1 (2)
C8ii—C4—H4A109.7C23—C20—C19121.0 (2)
N2—C4—H4B109.7C12—C20—C19119.9 (2)
C8ii—C4—H4B109.7N4—C21—C16122.5 (3)
H4A—C4—H4B108.2N4—C21—H21118.7
C13—C5—C3118.4 (3)C16—C21—H21118.7
C13—C5—H5120.8N3—C22—C7122.9 (3)
C3—C5—H5120.8N3—C22—H22118.6
N1—C6—C9iii110.4 (2)C7—C22—H22118.6
N1—C6—H6A109.6C20—C23—C14121.3 (3)
C9iii—C6—H6A109.6C20—C23—H23119.4
N1—C6—H6B109.6C14—C23—H23119.4
C9iii—C6—H6B109.6O3—C24—O2125.9 (2)
H6A—C6—H6B108.1O3—C24—C14120.1 (2)
C3—C7—C22117.6 (3)O2—C24—C14114.0 (2)
C3—C7—C2120.2 (3)
O2i—Cu1—O4—C19−1.3 (3)C22—N3—C13—C50.3 (4)
N4—Cu1—O4—C1995.58 (16)Cu1—N3—C13—C5−174.6 (2)
N3—Cu1—O4—C19−90.64 (16)C3—C5—C13—N30.4 (4)
O5—Cu1—O4—C19−174.53 (15)C23—C14—C15—C17−0.7 (4)
O2i—Cu1—N3—C13156.3 (2)C24—C14—C15—C17−178.8 (2)
O4—Cu1—N3—C13−50.2 (2)C11—C10—C16—C21−0.2 (4)
O5—Cu1—N3—C1361.3 (2)C20—C12—C17—C151.0 (4)
O2i—Cu1—N3—C22−18.4 (2)C14—C15—C17—C12−0.2 (4)
O4—Cu1—N3—C22135.1 (2)C21—N4—C18—C11−0.6 (4)
O5—Cu1—N3—C22−113.4 (2)Cu1—N4—C18—C11178.0 (2)
O2i—Cu1—N4—C1824.1 (2)C10—C11—C18—N40.0 (4)
O4—Cu1—N4—C18−129.5 (2)C1—C11—C18—N4178.2 (3)
O5—Cu1—N4—C18119.3 (2)Cu1—O4—C19—O1−7.3 (3)
O2i—Cu1—N4—C21−157.3 (2)Cu1—O4—C19—C20171.84 (18)
O4—Cu1—N4—C2149.1 (2)C17—C12—C20—C23−1.0 (4)
O5—Cu1—N4—C21−62.1 (2)C17—C12—C20—C19177.2 (2)
C8—N2—C1—C11−161.2 (3)O1—C19—C20—C23−171.1 (2)
C4—N2—C1—C1175.9 (3)O4—C19—C20—C239.6 (4)
C6—N1—C2—C7−72.1 (3)O1—C19—C20—C1210.7 (4)
C9—N1—C2—C7166.9 (3)O4—C19—C20—C12−168.6 (2)
C1—N2—C4—C8ii−176.4 (2)C18—N4—C21—C160.8 (4)
C8—N2—C4—C8ii59.3 (3)Cu1—N4—C21—C16−177.8 (2)
C7—C3—C5—C13−0.4 (5)C10—C16—C21—N4−0.5 (4)
C2—N1—C6—C9iii179.3 (2)C13—N3—C22—C7−1.1 (4)
C9—N1—C6—C9iii−58.8 (3)Cu1—N3—C22—C7173.6 (2)
C5—C3—C7—C22−0.3 (4)C3—C7—C22—N31.1 (4)
C5—C3—C7—C2177.2 (3)C2—C7—C22—N3−176.4 (3)
N1—C2—C7—C3166.5 (3)C12—C20—C23—C140.2 (4)
N1—C2—C7—C22−16.1 (4)C19—C20—C23—C14−178.0 (2)
C1—N2—C8—C4ii176.0 (2)C15—C14—C23—C200.6 (4)
C4—N2—C8—C4ii−59.4 (3)C24—C14—C23—C20178.8 (2)
C2—N1—C9—C6iii−177.9 (3)Cu1iv—O2—C24—O34.6 (4)
C6—N1—C9—C6iii58.8 (3)Cu1iv—O2—C24—C14−174.75 (15)
C16—C10—C11—C180.4 (4)C15—C14—C24—O3−178.8 (2)
C16—C10—C11—C1−177.8 (3)C23—C14—C24—O33.1 (4)
N2—C1—C11—C10−171.6 (3)C15—C14—C24—O20.6 (4)
N2—C1—C11—C1810.3 (4)C23—C14—C24—O2−177.5 (2)

Symmetry codes: (i) x, y+1, z; (ii) −x−1, −y+1, −z+1; (iii) −x−1, −y+1, −z; (iv) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O1v0.82 (2)1.96 (2)2.778 (3)174 (3)
O5—H5B···O3i0.83 (2)2.02 (2)2.805 (3)158 (3)

Symmetry codes: (v) x+1, y, z; (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2734).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software Ltd, Yarnton, England.
  • Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A. & Husseini, M. W. (2005). CrystEngComm, 7, 624–628.
  • Sheldrick, G. M. (2003). TWINABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2009). CELLNOW University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography