PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o691–o692.
Published online 2010 February 27. doi:  10.1107/S1600536810006392
PMCID: PMC2983566

2-Amino­pyridinium trifluoro­acetate

Abstract

The asymmetric unit of the title compound, C5H7N2 +·C2F3O2 , contains four independent 2-amino­pyridinium cations and four independent trifluoro­acetate anions. In the crystal structure, these ions are linked by N—H(...)O hydrogen bonds, forming four cation–anion pairs each containing an R 2 2(8) ring motif. The ion pairs are linked into two independent chains along [100] by N—H(...)O hydrogen bonds. In addition, C—H(...)O and C—H(...)F hydrogen bonds and π(...)π inter­actions [centoid–centroid separation = 3.6007 (17) Å] are observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Chao et al. (1975 [triangle]); Gellert & Hsu (1988 [triangle]); Demir et al. (2005 [triangle]); Jebas et al. (2006 [triangle]); Rademeyer (2007 [triangle]); Windholz (1976 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o691-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C2F3O2
  • M r = 208.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o691-efi1.jpg
  • a = 11.4641 (15) Å
  • b = 10.0221 (13) Å
  • c = 29.928 (4) Å
  • β = 92.918 (3)°
  • V = 3434.1 (8) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 100 K
  • 0.35 × 0.17 × 0.04 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.947, T max = 0.994
  • 28669 measured reflections
  • 6732 independent reflections
  • 4154 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.141
  • S = 1.02
  • 6732 reflections
  • 617 parameters
  • All H-atom parameters refined
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006392/ci5036sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006392/ci5036Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). The crystal structures of 2-aminopyridine (Chao et al., 1975), 2-aminopyridinium salicylate (Gellert & Hsu, 1988), 2-amino-pyridinium dihydrogenphosphate (Demir et al., 2005), bis(2-aminopyridinium) sulfate (Jebas et al., 2006) and 2-aminopyridinium nitrate (Rademeyer, 2007) have been reported in the literature. The crystal structure determination of the title compound was undertaken to study the hydrogen bonding interactions in it.

The asymmetric unit of the title compound consists of four crystallographically independent 2-aminopyridinium cations (A, B, C & D) and four trifluoroacetate anions (A, B, C & D) (Fig. 1). Each 2-aminopyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom N2A (molecule A), 0.007 (2) Å for atom C3B (molecule B), 0.007 (2) Å for atom N1C (molecule C) and 0.008 (3) Å for atom C5D (molecule D).

In the crystal structure (Fig. 2), carboxylate groups of A, B, C and D trifluoroacetate anions interact with two N–H groups of D, C, A and B 2-aminopyridinium cations, respectively, via pairs of N—H···O hydrogen bonds generating R22(8) motifs (Bernstein et al., 1995). The ionic pairs are linked into chains along [100] by N—H···O hydrogen bonds involving the remaining N–H groups. The crystal structure is further stabilized by C—H···O and C—H···F hydrogen bonds (Table 1) and π···π interactions involving the N1A/C1A–C5A pyridine rings at (x, y, z) and (1-x, 1-y, -z) with a centoid-to-centroid separation of 3.6007 (17) Å.

Experimental

To a hot methanol solution (20 ml) of 2-aminopyridine (47 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.83 (4)–1.02 (4) Å, C–H = 0.91 (3)–1.08 (3) Å].

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.

Crystal data

C5H7N2+·C2F3O2F(000) = 1696
Mr = 208.15Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3066 reflections
a = 11.4641 (15) Åθ = 2.7–24.0°
b = 10.0221 (13) ŵ = 0.16 mm1
c = 29.928 (4) ÅT = 100 K
β = 92.918 (3)°Plate, colourless
V = 3434.1 (8) Å30.35 × 0.17 × 0.04 mm
Z = 16

Data collection

Bruker APEX DUO CCD area-detector diffractometer6732 independent reflections
Radiation source: fine-focus sealed tube4154 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→12
Tmin = 0.947, Tmax = 0.994k = −12→12
28669 measured reflectionsl = −36→36

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141All H-atom parameters refined
S = 1.02w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3
6732 reflections(Δ/σ)max = 0.001
617 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.53238 (18)0.6375 (2)0.03514 (8)0.0211 (5)
N2A0.7286 (2)0.6627 (3)0.02401 (9)0.0266 (6)
C1A0.4393 (2)0.5710 (3)0.05182 (10)0.0248 (7)
C2A0.4546 (3)0.4564 (3)0.07439 (10)0.0271 (7)
C3A0.5680 (2)0.4031 (3)0.08038 (10)0.0246 (7)
C4A0.6604 (2)0.4684 (3)0.06365 (10)0.0248 (7)
C5A0.6430 (2)0.5902 (3)0.04029 (9)0.0218 (6)
F1A−0.04773 (14)0.44273 (16)0.07172 (5)0.0314 (4)
F2A0.06503 (16)0.56750 (19)0.11269 (6)0.0419 (5)
F3A0.13664 (14)0.40701 (17)0.07542 (6)0.0347 (4)
O1A−0.01983 (15)0.65268 (18)0.01836 (6)0.0218 (4)
O2A0.17434 (15)0.6235 (2)0.02589 (7)0.0289 (5)
C6A0.0564 (2)0.5042 (3)0.07342 (9)0.0231 (6)
C7A0.0723 (2)0.6020 (3)0.03494 (9)0.0187 (6)
N1B0.25015 (19)0.0690 (2)0.22063 (8)0.0223 (5)
N2B0.4426 (2)0.0544 (3)0.24561 (10)0.0327 (7)
C1B0.1593 (3)0.1252 (3)0.19635 (10)0.0290 (7)
C2B0.1754 (3)0.2363 (3)0.17180 (11)0.0352 (8)
C3B0.2877 (3)0.2902 (3)0.17187 (11)0.0365 (8)
C4B0.3786 (3)0.2344 (3)0.19497 (11)0.0342 (8)
C5B0.3600 (2)0.1179 (3)0.22101 (10)0.0265 (7)
F1B0.19140 (15)0.79602 (17)0.16527 (6)0.0357 (4)
F2B0.31202 (16)0.64578 (17)0.14540 (6)0.0391 (5)
F3B0.36394 (14)0.78893 (16)0.19615 (6)0.0326 (4)
O1B0.12827 (16)0.5810 (2)0.21178 (7)0.0306 (5)
O2B0.30890 (15)0.57592 (19)0.24392 (6)0.0237 (5)
C6B0.2742 (2)0.7125 (3)0.18099 (10)0.0240 (7)
C7B0.2322 (2)0.6146 (3)0.21597 (9)0.0220 (6)
N1C0.97689 (18)0.1324 (2)0.03769 (8)0.0195 (5)
N2C0.7775 (2)0.1534 (3)0.02793 (9)0.0234 (6)
C1C1.0764 (2)0.0718 (3)0.05421 (10)0.0233 (7)
C2C1.0705 (3)−0.0409 (3)0.07859 (10)0.0259 (7)
C3C0.9596 (3)−0.0928 (3)0.08655 (10)0.0259 (7)
C4C0.8602 (2)−0.0311 (3)0.07060 (10)0.0229 (6)
C5C0.8686 (2)0.0864 (3)0.04501 (9)0.0187 (6)
F1C0.70647 (15)0.14098 (17)0.14889 (6)0.0361 (5)
F2C0.83699 (16)0.28461 (17)0.13276 (6)0.0383 (5)
F3C0.87288 (13)0.14044 (16)0.18453 (5)0.0290 (4)
O1C0.64277 (16)0.3622 (2)0.19178 (7)0.0296 (5)
O2C0.81484 (15)0.35674 (19)0.23072 (6)0.0243 (5)
C6C0.7897 (2)0.2205 (3)0.16693 (9)0.0235 (7)
C7C0.7438 (2)0.3217 (3)0.20015 (9)0.0215 (6)
N1D0.75292 (18)0.8656 (2)0.20606 (8)0.0203 (5)
N2D0.9457 (2)0.8664 (3)0.23238 (9)0.0272 (6)
C1D0.6606 (2)0.8152 (3)0.18099 (10)0.0252 (7)
C2D0.6725 (3)0.7041 (3)0.15644 (10)0.0293 (7)
C3D0.7819 (3)0.6428 (3)0.15695 (10)0.0283 (7)
C4D0.8744 (3)0.6922 (3)0.18151 (10)0.0253 (7)
C5D0.8595 (2)0.8081 (3)0.20725 (9)0.0216 (6)
F1D0.38550 (14)0.89359 (17)0.07557 (6)0.0363 (5)
F2D0.45932 (18)1.0533 (2)0.11547 (6)0.0484 (5)
F3D0.56876 (14)0.93681 (17)0.07456 (6)0.0355 (5)
O1D0.33350 (16)1.1182 (2)0.02989 (8)0.0394 (6)
O2D0.52497 (15)1.14436 (19)0.02069 (6)0.0238 (5)
C6D0.4630 (2)0.9937 (3)0.07548 (10)0.0261 (7)
C7D0.4378 (2)1.0945 (3)0.03804 (10)0.0245 (7)
H1A0.364 (3)0.615 (3)0.0418 (9)0.026 (8)*
H2A0.383 (3)0.406 (3)0.0863 (11)0.050 (10)*
H3A0.579 (3)0.315 (3)0.0972 (10)0.037 (9)*
H4A0.748 (3)0.435 (3)0.0678 (9)0.031 (8)*
H1NA0.525 (2)0.710 (3)0.0166 (9)0.016 (7)*
H2NA0.697 (4)0.743 (4)0.0063 (13)0.080 (14)*
H3NA0.799 (3)0.641 (3)0.0250 (11)0.052 (11)*
H1B0.076 (3)0.081 (3)0.2000 (10)0.042 (9)*
H2B0.100 (3)0.280 (3)0.1548 (11)0.057 (11)*
H3B0.297 (3)0.364 (3)0.1548 (11)0.041 (10)*
H4B0.466 (3)0.266 (3)0.1957 (10)0.044 (9)*
H1NB0.240 (3)−0.011 (3)0.2385 (9)0.031 (9)*
H2NB0.430 (3)−0.007 (4)0.2673 (11)0.043 (11)*
H3NB0.511 (3)0.087 (3)0.2509 (10)0.038 (10)*
H1C1.148 (2)0.110 (3)0.0459 (9)0.022 (8)*
H2C1.139 (3)−0.086 (3)0.0906 (10)0.035 (9)*
H3C0.955 (2)−0.174 (3)0.1037 (10)0.029 (8)*
H4C0.787 (3)−0.064 (3)0.0765 (9)0.027 (8)*
H1NC0.984 (3)0.202 (3)0.0213 (10)0.029 (9)*
H2NC0.792 (3)0.222 (3)0.0099 (11)0.049 (11)*
H3NC0.701 (3)0.121 (4)0.0304 (12)0.062 (12)*
H1D0.583 (2)0.864 (3)0.1846 (9)0.023 (7)*
H2D0.603 (3)0.670 (3)0.1391 (10)0.034 (8)*
H3D0.791 (2)0.560 (3)0.1406 (9)0.027 (8)*
H4D0.961 (2)0.650 (3)0.1830 (9)0.027 (8)*
H1ND0.746 (2)0.938 (3)0.2247 (9)0.026 (8)*
H2ND0.940 (2)0.937 (3)0.2533 (10)0.026 (8)*
H3ND1.009 (3)0.826 (3)0.2377 (10)0.032 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0145 (12)0.0229 (14)0.0259 (14)0.0006 (10)0.0017 (10)−0.0020 (12)
N2A0.0104 (12)0.0265 (15)0.0431 (17)0.0006 (10)0.0041 (11)−0.0005 (12)
C1A0.0138 (14)0.0332 (18)0.0275 (17)−0.0003 (12)0.0023 (12)−0.0038 (14)
C2A0.0248 (16)0.0342 (18)0.0227 (17)−0.0062 (13)0.0035 (12)−0.0053 (14)
C3A0.0236 (15)0.0272 (17)0.0230 (17)−0.0034 (13)0.0014 (12)−0.0061 (14)
C4A0.0209 (15)0.0246 (16)0.0285 (17)0.0018 (12)−0.0021 (12)−0.0022 (14)
C5A0.0171 (14)0.0240 (16)0.0246 (16)−0.0012 (11)0.0020 (11)−0.0063 (13)
F1A0.0229 (9)0.0390 (11)0.0329 (10)−0.0065 (7)0.0054 (7)0.0108 (8)
F2A0.0512 (12)0.0532 (13)0.0209 (10)−0.0013 (9)−0.0012 (8)−0.0068 (9)
F3A0.0275 (9)0.0362 (10)0.0404 (11)0.0104 (8)0.0016 (8)0.0155 (9)
O1A0.0134 (9)0.0236 (11)0.0283 (11)0.0014 (8)0.0007 (8)0.0043 (9)
O2A0.0123 (10)0.0337 (12)0.0409 (13)−0.0013 (8)0.0015 (8)0.0128 (10)
C6A0.0167 (14)0.0278 (17)0.0247 (17)−0.0001 (12)−0.0005 (11)0.0022 (14)
C7A0.0153 (14)0.0185 (15)0.0222 (15)−0.0001 (11)−0.0010 (11)−0.0006 (12)
N1B0.0181 (12)0.0207 (13)0.0285 (14)−0.0021 (10)0.0046 (10)0.0000 (11)
N2B0.0184 (14)0.0388 (17)0.0407 (18)−0.0071 (12)0.0006 (12)−0.0067 (15)
C1B0.0272 (16)0.0269 (17)0.0329 (19)0.0056 (13)0.0017 (13)−0.0004 (14)
C2B0.046 (2)0.0289 (19)0.0311 (19)0.0078 (15)0.0098 (15)0.0050 (15)
C3B0.056 (2)0.0247 (19)0.031 (2)0.0006 (16)0.0200 (16)0.0015 (16)
C4B0.043 (2)0.0269 (18)0.0346 (19)−0.0140 (15)0.0184 (15)−0.0088 (15)
C5B0.0237 (16)0.0253 (17)0.0312 (18)−0.0036 (13)0.0088 (13)−0.0102 (14)
F1B0.0408 (11)0.0322 (10)0.0334 (11)0.0069 (8)−0.0045 (8)0.0080 (8)
F2B0.0535 (12)0.0365 (11)0.0288 (11)0.0006 (9)0.0179 (8)−0.0056 (9)
F3B0.0310 (10)0.0300 (10)0.0369 (11)−0.0055 (8)0.0029 (8)0.0029 (8)
O1B0.0203 (11)0.0425 (13)0.0286 (12)−0.0044 (9)−0.0027 (8)0.0026 (10)
O2B0.0171 (10)0.0271 (11)0.0267 (11)0.0021 (8)−0.0008 (8)0.0026 (9)
C6B0.0215 (15)0.0244 (16)0.0258 (17)0.0021 (12)−0.0011 (12)−0.0041 (13)
C7B0.0207 (15)0.0248 (16)0.0205 (16)0.0028 (12)0.0023 (12)−0.0052 (13)
N1C0.0163 (12)0.0183 (13)0.0239 (14)0.0000 (9)0.0024 (10)0.0029 (11)
N2C0.0123 (12)0.0249 (15)0.0330 (16)−0.0029 (10)0.0013 (10)0.0035 (12)
C1C0.0156 (15)0.0299 (17)0.0245 (16)0.0007 (12)0.0013 (11)0.0016 (13)
C2C0.0219 (15)0.0303 (18)0.0253 (17)0.0084 (13)0.0003 (12)0.0050 (14)
C3C0.0346 (17)0.0183 (16)0.0254 (17)0.0011 (13)0.0074 (13)0.0061 (13)
C4C0.0198 (15)0.0208 (16)0.0287 (17)−0.0012 (12)0.0071 (12)0.0006 (13)
C5C0.0159 (14)0.0187 (15)0.0216 (15)−0.0028 (11)0.0025 (11)−0.0027 (12)
F1C0.0356 (10)0.0326 (10)0.0391 (11)−0.0034 (8)−0.0100 (8)−0.0083 (9)
F2C0.0545 (12)0.0334 (11)0.0283 (11)−0.0007 (9)0.0146 (8)0.0082 (8)
F3C0.0258 (9)0.0295 (10)0.0316 (10)0.0060 (7)0.0007 (7)0.0014 (8)
O1C0.0192 (11)0.0336 (12)0.0354 (13)0.0032 (9)−0.0037 (9)0.0000 (10)
O2C0.0172 (10)0.0266 (11)0.0288 (12)−0.0003 (8)−0.0025 (8)−0.0050 (9)
C6C0.0214 (15)0.0242 (16)0.0247 (16)−0.0021 (12)−0.0011 (12)0.0063 (13)
C7C0.0197 (15)0.0220 (16)0.0228 (16)−0.0031 (11)0.0017 (12)0.0039 (12)
N1D0.0162 (12)0.0202 (13)0.0244 (14)0.0004 (10)0.0007 (10)−0.0004 (11)
N2D0.0155 (13)0.0337 (16)0.0322 (16)0.0024 (11)−0.0021 (11)0.0024 (13)
C1D0.0200 (15)0.0279 (17)0.0277 (17)−0.0038 (12)0.0007 (12)0.0021 (14)
C2D0.0313 (17)0.0258 (17)0.0310 (18)−0.0058 (13)0.0026 (14)−0.0024 (14)
C3D0.0374 (18)0.0200 (17)0.0283 (18)−0.0011 (14)0.0080 (14)−0.0003 (14)
C4D0.0295 (17)0.0217 (16)0.0256 (17)0.0053 (13)0.0093 (13)0.0057 (13)
C5D0.0199 (15)0.0238 (16)0.0214 (16)0.0005 (11)0.0052 (11)0.0088 (12)
F1D0.0292 (10)0.0351 (10)0.0449 (12)−0.0034 (8)0.0047 (8)0.0097 (9)
F2D0.0641 (14)0.0538 (13)0.0277 (11)0.0036 (10)0.0064 (9)−0.0105 (10)
F3D0.0227 (9)0.0446 (11)0.0386 (11)0.0077 (8)−0.0039 (7)0.0054 (9)
O1D0.0132 (11)0.0437 (14)0.0617 (16)0.0031 (9)0.0068 (10)0.0201 (12)
O2D0.0146 (10)0.0283 (11)0.0287 (12)−0.0023 (8)0.0046 (8)−0.0017 (9)
C6D0.0208 (15)0.0291 (17)0.0287 (18)−0.0018 (12)0.0025 (12)−0.0077 (14)
C7D0.0149 (14)0.0272 (17)0.0315 (17)0.0002 (12)0.0036 (12)−0.0035 (14)

Geometric parameters (Å, °)

N1A—C5A1.355 (3)N1C—C5C1.353 (3)
N1A—C1A1.373 (4)N1C—C1C1.363 (3)
N1A—H1NA0.92 (3)N1C—H1NC0.86 (3)
N2A—C5A1.334 (4)N2C—C5C1.323 (3)
N2A—H2NA1.02 (4)N2C—H2NC0.90 (3)
N2A—H3NA0.83 (4)N2C—H3NC0.94 (4)
C1A—C2A1.340 (4)C1C—C2C1.348 (4)
C1A—H1A1.00 (3)C1C—H1C0.95 (3)
C2A—C3A1.409 (4)C2C—C3C1.406 (4)
C2A—H2A1.04 (3)C2C—H2C0.96 (3)
C3A—C4A1.362 (4)C3C—C4C1.361 (4)
C3A—H3A1.02 (3)C3C—H3C0.97 (3)
C4A—C5A1.416 (4)C4C—C5C1.410 (4)
C4A—H4A1.06 (3)C4C—H4C0.92 (3)
F1A—C6A1.342 (3)F1C—C6C1.336 (3)
F2A—C6A1.335 (3)F2C—C6C1.345 (3)
F3A—C6A1.339 (3)F3C—C6C1.334 (3)
O1A—C7A1.252 (3)O1C—C7C1.240 (3)
O2A—C7A1.233 (3)O2C—C7C1.244 (3)
C6A—C7A1.531 (4)C6C—C7C1.533 (4)
N1B—C5B1.351 (3)N1D—C5D1.349 (3)
N1B—C1B1.361 (4)N1D—C1D1.363 (3)
N1B—H1NB0.97 (3)N1D—H1ND0.92 (3)
N2B—C5B1.331 (4)N2D—C5D1.346 (4)
N2B—H2NB0.91 (3)N2D—H2ND0.95 (3)
N2B—H3NB0.86 (3)N2D—H3ND0.84 (3)
C1B—C2B1.352 (4)C1D—C2D1.345 (4)
C1B—H1B1.06 (3)C1D—H1D1.03 (3)
C2B—C3B1.396 (5)C2D—C3D1.395 (4)
C2B—H2B1.07 (3)C2D—H2D0.99 (3)
C3B—C4B1.342 (5)C3D—C4D1.353 (4)
C3B—H3B0.91 (3)C3D—H3D0.97 (3)
C4B—C5B1.426 (4)C4D—C5D1.409 (4)
C4B—H4B1.05 (3)C4D—H4D1.08 (3)
F1B—C6B1.334 (3)F1D—C6D1.340 (3)
F2B—C6B1.348 (3)F2D—C6D1.340 (3)
F3B—C6B1.343 (3)F3D—C6D1.341 (3)
O1B—C7B1.238 (3)O1D—C7D1.231 (3)
O2B—C7B1.245 (3)O2D—C7D1.253 (3)
C6B—C7B1.530 (4)C6D—C7D1.526 (4)
C5A—N1A—C1A121.9 (3)C5C—N1C—C1C123.2 (3)
C5A—N1A—H1NA113.5 (17)C5C—N1C—H1NC119 (2)
C1A—N1A—H1NA124.1 (17)C1C—N1C—H1NC118 (2)
C5A—N2A—H2NA112 (2)C5C—N2C—H2NC117 (2)
C5A—N2A—H3NA125 (2)C5C—N2C—H3NC121 (2)
H2NA—N2A—H3NA123 (3)H2NC—N2C—H3NC121 (3)
C2A—C1A—N1A121.1 (3)C2C—C1C—N1C120.4 (3)
C2A—C1A—H1A127.9 (16)C2C—C1C—H1C123.0 (16)
N1A—C1A—H1A110.7 (16)N1C—C1C—H1C116.5 (16)
C1A—C2A—C3A119.0 (3)C1C—C2C—C3C118.2 (3)
C1A—C2A—H2A120.0 (18)C1C—C2C—H2C122.2 (18)
C3A—C2A—H2A120.9 (18)C3C—C2C—H2C119.6 (18)
C4A—C3A—C2A120.1 (3)C4C—C3C—C2C121.4 (3)
C4A—C3A—H3A121.1 (17)C4C—C3C—H3C119.9 (17)
C2A—C3A—H3A118.8 (17)C2C—C3C—H3C118.7 (17)
C3A—C4A—C5A120.2 (3)C3C—C4C—C5C119.4 (3)
C3A—C4A—H4A123.7 (16)C3C—C4C—H4C121.2 (18)
C5A—C4A—H4A116.1 (16)C5C—C4C—H4C119.4 (18)
N2A—C5A—N1A118.0 (3)N2C—C5C—N1C118.5 (3)
N2A—C5A—C4A124.2 (3)N2C—C5C—C4C124.0 (3)
N1A—C5A—C4A117.8 (3)N1C—C5C—C4C117.5 (2)
F2A—C6A—F3A106.7 (2)F3C—C6C—F1C106.4 (2)
F2A—C6A—F1A106.1 (2)F3C—C6C—F2C106.2 (2)
F3A—C6A—F1A106.0 (2)F1C—C6C—F2C106.6 (2)
F2A—C6A—C7A110.6 (2)F3C—C6C—C7C113.8 (2)
F3A—C6A—C7A113.1 (2)F1C—C6C—C7C113.3 (2)
F1A—C6A—C7A113.9 (2)F2C—C6C—C7C110.0 (2)
O2A—C7A—O1A129.3 (3)O1C—C7C—O2C128.8 (3)
O2A—C7A—C6A115.3 (2)O1C—C7C—C6C115.7 (2)
O1A—C7A—C6A115.3 (2)O2C—C7C—C6C115.5 (2)
C5B—N1B—C1B122.8 (3)C5D—N1D—C1D122.2 (3)
C5B—N1B—H1NB115.4 (17)C5D—N1D—H1ND115.3 (18)
C1B—N1B—H1NB121.8 (17)C1D—N1D—H1ND122.3 (18)
C5B—N2B—H2NB126 (2)C5D—N2D—H2ND128.0 (17)
C5B—N2B—H3NB122 (2)C5D—N2D—H3ND120 (2)
H2NB—N2B—H3NB108 (3)H2ND—N2D—H3ND109 (3)
C2B—C1B—N1B120.6 (3)C2D—C1D—N1D120.6 (3)
C2B—C1B—H1B123.2 (16)C2D—C1D—H1D124.2 (15)
N1B—C1B—H1B116.0 (16)N1D—C1D—H1D115.0 (15)
C1B—C2B—C3B118.0 (3)C1D—C2D—C3D118.3 (3)
C1B—C2B—H2B117.9 (19)C1D—C2D—H2D118.3 (18)
C3B—C2B—H2B124.0 (19)C3D—C2D—H2D123.4 (18)
C4B—C3B—C2B122.0 (3)C4D—C3D—C2D121.6 (3)
C4B—C3B—H3B121 (2)C4D—C3D—H3D118.7 (17)
C2B—C3B—H3B117 (2)C2D—C3D—H3D119.6 (17)
C3B—C4B—C5B119.3 (3)C3D—C4D—C5D119.0 (3)
C3B—C4B—H4B126.8 (17)C3D—C4D—H4D124.8 (14)
C5B—C4B—H4B113.9 (17)C5D—C4D—H4D116.2 (14)
N2B—C5B—N1B117.9 (3)N2D—C5D—N1D117.9 (3)
N2B—C5B—C4B124.9 (3)N2D—C5D—C4D123.9 (3)
N1B—C5B—C4B117.3 (3)N1D—C5D—C4D118.2 (3)
F1B—C6B—F3B106.3 (2)F1D—C6D—F2D106.3 (2)
F1B—C6B—F2B106.5 (2)F1D—C6D—F3D106.4 (2)
F3B—C6B—F2B106.2 (2)F2D—C6D—F3D106.1 (2)
F1B—C6B—C7B113.6 (2)F1D—C6D—C7D113.4 (2)
F3B—C6B—C7B113.4 (2)F2D—C6D—C7D110.3 (2)
F2B—C6B—C7B110.4 (2)F3D—C6D—C7D113.8 (2)
O1B—C7B—O2B128.8 (3)O1D—C7D—O2D128.9 (3)
O1B—C7B—C6B116.1 (2)O1D—C7D—C6D114.7 (3)
O2B—C7B—C6B115.0 (2)O2D—C7D—C6D116.3 (2)
C5A—N1A—C1A—C2A0.6 (4)C5C—N1C—C1C—C2C1.1 (4)
N1A—C1A—C2A—C3A−0.9 (4)N1C—C1C—C2C—C3C−0.3 (4)
C1A—C2A—C3A—C4A0.5 (4)C1C—C2C—C3C—C4C−0.6 (5)
C2A—C3A—C4A—C5A0.2 (4)C2C—C3C—C4C—C5C0.9 (4)
C1A—N1A—C5A—N2A−178.4 (3)C1C—N1C—C5C—N2C179.2 (3)
C1A—N1A—C5A—C4A0.0 (4)C1C—N1C—C5C—C4C−0.8 (4)
C3A—C4A—C5A—N2A177.9 (3)C3C—C4C—C5C—N2C179.8 (3)
C3A—C4A—C5A—N1A−0.5 (4)C3C—C4C—C5C—N1C−0.2 (4)
F2A—C6A—C7A—O2A85.4 (3)F3C—C6C—C7C—O1C−154.3 (2)
F3A—C6A—C7A—O2A−34.1 (3)F1C—C6C—C7C—O1C−32.5 (3)
F1A—C6A—C7A—O2A−155.3 (2)F2C—C6C—C7C—O1C86.7 (3)
F2A—C6A—C7A—O1A−92.0 (3)F3C—C6C—C7C—O2C28.9 (3)
F3A—C6A—C7A—O1A148.5 (2)F1C—C6C—C7C—O2C150.7 (2)
F1A—C6A—C7A—O1A27.4 (3)F2C—C6C—C7C—O2C−90.2 (3)
C5B—N1B—C1B—C2B−1.3 (4)C5D—N1D—C1D—C2D0.5 (4)
N1B—C1B—C2B—C3B0.5 (5)N1D—C1D—C2D—C3D−0.7 (4)
C1B—C2B—C3B—C4B0.7 (5)C1D—C2D—C3D—C4D0.3 (5)
C2B—C3B—C4B—C5B−1.3 (5)C2D—C3D—C4D—C5D0.2 (4)
C1B—N1B—C5B—N2B−179.4 (3)C1D—N1D—C5D—N2D178.9 (3)
C1B—N1B—C5B—C4B0.7 (4)C1D—N1D—C5D—C4D0.0 (4)
C3B—C4B—C5B—N2B−179.3 (3)C3D—C4D—C5D—N2D−179.1 (3)
C3B—C4B—C5B—N1B0.5 (4)C3D—C4D—C5D—N1D−0.4 (4)
F1B—C6B—C7B—O1B31.0 (3)F1D—C6D—C7D—O1D37.8 (4)
F3B—C6B—C7B—O1B152.5 (2)F2D—C6D—C7D—O1D−81.4 (3)
F2B—C6B—C7B—O1B−88.5 (3)F3D—C6D—C7D—O1D159.6 (3)
F1B—C6B—C7B—O2B−151.5 (2)F1D—C6D—C7D—O2D−144.0 (3)
F3B—C6B—C7B—O2B−30.0 (3)F2D—C6D—C7D—O2D96.8 (3)
F2B—C6B—C7B—O2B89.0 (3)F3D—C6D—C7D—O2D−22.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Di0.92 (3)1.91 (3)2.809 (3)168 (2)
N2A—H2NA···O1Di1.02 (4)1.79 (4)2.795 (4)169 (4)
N2A—H3NA···O1Aii0.84 (3)2.10 (3)2.899 (3)160 (3)
N1B—H1NB···O2Ciii0.97 (3)1.75 (3)2.704 (3)166 (3)
N2B—H2NB···O1Ciii0.91 (4)2.01 (4)2.892 (4)164 (3)
N2B—H3NB···O2Biii0.86 (3)2.07 (3)2.858 (3)154 (3)
N1C—H1NC···O1Aiv0.86 (3)1.94 (3)2.789 (3)172 (3)
N2C—H2NC···O2Aiv0.90 (3)1.93 (3)2.827 (4)177 (3)
N2C—H3NC···O2Dv0.94 (3)2.04 (3)2.894 (3)150 (3)
N1D—H1ND···O2Bvi0.92 (3)1.80 (3)2.701 (3)164 (2)
N2D—H2ND···O1Bvi0.95 (3)1.97 (3)2.878 (4)160 (2)
N2D—H3ND···O2Cvii0.84 (3)2.21 (3)2.908 (3)141 (3)
C1A—H1A···O2A1.00 (3)2.20 (3)3.141 (3)155 (2)
C1B—H1B···F3Cviii1.06 (3)2.43 (3)3.288 (4)137 (2)
C1C—H1C···O1Dix0.95 (2)2.21 (2)3.107 (3)158 (2)
C4A—H4A···F1Aii1.06 (3)2.34 (3)3.352 (3)159 (2)
C4B—H4B···O1C1.05 (3)2.25 (3)3.294 (4)171 (2)
C4C—H4C···F3Dv0.93 (3)2.50 (3)3.365 (3)155 (3)
C4D—H4D···O1Bii1.08 (2)2.18 (2)3.204 (4)159 (2)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x, y−1, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+2, y+1/2, −z+1/2; (viii) x−1, y, z; (ix) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5036).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). Acta Cryst. C61, o565–o567. [PubMed]
  • Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313. [PubMed]
  • Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.
  • Rademeyer, M. (2007). Acta Cryst. E63, o545–o546.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography