PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o619.
Published online 2010 February 13. doi:  10.1107/S1600536810005088
PMCID: PMC2983562

5-Methyl 3-(2-methyl­prop-3-yl) 2,6-di­methyl-4-(2-nitro­sophen­yl)pyridine-3,5-dicarboxyl­ate

Abstract

In the title compound, C20H22N2O5, a photo-degradation product of the hypertension drug nisoldipine, the dihedral angle between the nitro­sophenyl ring and the pyridine ring is 75.7 (3)°. In the crystal structure, weak C—H(...)O hydrogen bonds help to establish the packing.

Related literature

For general background to nisoldipine derivatives, see: Marciniec et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o619-scheme1.jpg

Experimental

Crystal data

  • C20H22N2O5
  • M r = 370.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o619-efi1.jpg
  • a = 7.1831 (4) Å
  • b = 9.7819 (6) Å
  • c = 15.0245 (9) Å
  • α = 89.488 (3)°
  • β = 81.201 (3)°
  • γ = 70.625 (3)°
  • V = 983.19 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.42 × 0.28 × 0.22 mm

Data collection

  • Bruker APEX II CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.963, T max = 0.980
  • 5353 measured reflections
  • 3623 independent reflections
  • 2500 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077
  • wR(F 2) = 0.311
  • S = 1.01
  • 3623 reflections
  • 250 parameters
  • H-atom parameters not refined
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005088/hb5320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005088/hb5320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (Nos. 30901883, 20972189, 30600163), the Natural Science Foundation of Shannxi Province (No. 2008C274) and the Administration Traditional Chinese Medicine Foundation of Shannxi Province (No. jc46, zy16) for financial support.

supplementary crystallographic information

Comment

Nisoldipine has been the subject of many analytical chemical investigations due to the commercial preparations for treatment of hypertension (Marciniec et al., 2002). Here, we describe the synthesis and structural characterization of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In this structure, the dihedral angle between the nitrosophenyl ring and the pyridine ring is 75.7 (3)°. Weak C—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure.

Experimental

A solution of nisoldipine (10 mmol) in 50 ml acetone was exposed to sunlight for 5 h at ambient temperature. To the mixture was added 50 ml water, followed by filtration. The crude product was purified by flash chromatography on silica gel (1:1 ethyl acetate/hexane). Anal. C20H22N2O5: C, 64.79; H, 5.94; N, 7.56. Found: C, 64.65; H, 5.82; N, 7.50 %. Colourless blocks of (I) were recrystallised from ethanol.

Refinement

H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.92—0.96 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CMe). In the final difference map the highest peak is 1.68 Å from atom O3 and the deepest hole is 0.65 Å from atom O2.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.

Crystal data

C20H22N2O5Z = 2
Mr = 370.40F(000) = 392
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1831 (4) ÅCell parameters from 1617 reflections
b = 9.7819 (6) Åθ = 2.2–24.3°
c = 15.0245 (9) ŵ = 0.09 mm1
α = 89.488 (3)°T = 296 K
β = 81.201 (3)°Block, colourless
γ = 70.625 (3)°0.42 × 0.28 × 0.22 mm
V = 983.19 (10) Å3

Data collection

Bruker APEX II CCD diffractometer3623 independent reflections
Radiation source: fine-focus sealed tube2500 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −8→8
Tmin = 0.963, Tmax = 0.980k = −11→11
5353 measured reflectionsl = −15→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.311H-atom parameters not refined
S = 1.01w = 1/[σ2(Fo2) + (0.240P)2] where P = (Fo2 + 2Fc2)/3
3623 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6145 (4)0.4193 (3)0.3529 (2)0.0509 (7)
C20.7137 (5)0.5026 (4)0.3888 (2)0.0619 (8)
H20.64240.58930.42150.074*
C30.9183 (5)0.4525 (4)0.3742 (2)0.0686 (10)
H30.98720.50680.39630.082*
C41.0230 (5)0.3236 (4)0.3276 (2)0.0655 (9)
H41.16200.29080.31900.079*
C50.9240 (4)0.2413 (4)0.2931 (2)0.0597 (8)
H50.99690.15380.26150.072*
C60.7173 (4)0.2887 (3)0.30541 (18)0.0471 (7)
C70.6111 (4)0.2014 (3)0.26614 (18)0.0486 (7)
C80.5973 (4)0.0750 (3)0.30544 (19)0.0493 (7)
C90.5000 (5)−0.0045 (3)0.2660 (2)0.0573 (8)
C100.4346 (5)0.1561 (4)0.1519 (2)0.0624 (8)
C110.5245 (5)0.2442 (3)0.1897 (2)0.0589 (8)
C120.6737 (4)0.0337 (3)0.3918 (2)0.0527 (7)
C130.8802 (7)−0.1539 (4)0.4692 (3)0.0913 (13)
H13A0.8912−0.07620.50430.137*
H13B1.0089−0.22780.45500.137*
H13C0.7878−0.19420.50300.137*
C140.4632 (7)−0.1378 (4)0.3078 (3)0.0812 (11)
H14A0.3521−0.15240.28590.122*
H14B0.4338−0.12330.37220.122*
H14C0.5803−0.22140.29150.122*
C150.3426 (7)0.1944 (5)0.0689 (3)0.0908 (13)
H15A0.32020.11120.04530.136*
H15B0.43070.22460.02460.136*
H15C0.21740.27200.08310.136*
C160.5224 (5)0.3875 (4)0.1491 (2)0.0652 (9)
C170.3105 (6)0.6240 (4)0.1237 (3)0.0798 (11)
H17A0.35030.61150.05890.096*
H17B0.39220.67140.14790.096*
C180.0950 (7)0.7135 (4)0.1464 (3)0.0862 (12)
H180.06350.73000.21200.103*
C19−0.0422 (8)0.6433 (6)0.1188 (4)0.1166 (18)
H19A−0.00700.61790.05540.175*
H19B−0.17710.70920.13130.175*
H19C−0.03140.55730.15190.175*
C200.0630 (9)0.8621 (5)0.1047 (4)0.1198 (18)
H20A0.10120.84890.04040.180*
H20B0.14310.90960.12870.180*
H20C−0.07550.92070.11880.180*
N10.4005 (4)0.4598 (3)0.36627 (18)0.0646 (8)
N20.4221 (4)0.0355 (3)0.19043 (18)0.0635 (7)
O10.3121 (4)0.5800 (3)0.4003 (2)0.0954 (10)
O20.3373 (4)0.4833 (3)0.16329 (17)0.0769 (8)
O30.6613 (4)0.4107 (3)0.1127 (2)0.0913 (9)
O40.6244 (4)0.1108 (2)0.45823 (15)0.0714 (7)
O50.8089 (4)−0.0987 (2)0.38649 (16)0.0771 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0461 (15)0.0539 (16)0.0569 (16)−0.0199 (13)−0.0133 (12)0.0081 (13)
C20.069 (2)0.0572 (18)0.0674 (19)−0.0264 (15)−0.0207 (16)0.0038 (14)
C30.067 (2)0.082 (2)0.076 (2)−0.0430 (18)−0.0258 (17)0.0156 (18)
C40.0428 (16)0.083 (2)0.078 (2)−0.0264 (16)−0.0173 (15)0.0088 (18)
C50.0468 (16)0.0646 (19)0.0653 (18)−0.0144 (14)−0.0108 (14)0.0018 (14)
C60.0467 (15)0.0532 (16)0.0468 (14)−0.0213 (12)−0.0142 (12)0.0114 (12)
C70.0434 (14)0.0519 (16)0.0500 (15)−0.0143 (12)−0.0095 (12)0.0033 (12)
C80.0463 (15)0.0454 (15)0.0526 (15)−0.0094 (12)−0.0104 (12)0.0016 (12)
C90.0680 (19)0.0475 (16)0.0566 (17)−0.0188 (14)−0.0123 (14)0.0018 (13)
C100.069 (2)0.067 (2)0.0594 (18)−0.0290 (16)−0.0223 (15)0.0063 (15)
C110.0603 (18)0.0646 (19)0.0587 (17)−0.0262 (15)−0.0180 (14)0.0102 (14)
C120.0525 (16)0.0487 (16)0.0580 (17)−0.0183 (13)−0.0093 (13)0.0062 (13)
C130.102 (3)0.075 (2)0.086 (3)−0.001 (2)−0.046 (2)0.018 (2)
C140.118 (3)0.066 (2)0.078 (2)−0.048 (2)−0.032 (2)0.0136 (17)
C150.135 (4)0.091 (3)0.074 (2)−0.057 (3)−0.056 (2)0.020 (2)
C160.069 (2)0.084 (2)0.0529 (17)−0.0330 (19)−0.0217 (16)0.0143 (16)
C170.096 (3)0.069 (2)0.081 (2)−0.030 (2)−0.027 (2)0.0173 (18)
C180.094 (3)0.067 (2)0.093 (3)−0.015 (2)−0.030 (2)0.0032 (19)
C190.104 (4)0.104 (4)0.146 (5)−0.031 (3)−0.043 (3)0.018 (3)
C200.139 (5)0.073 (3)0.144 (5)−0.022 (3)−0.041 (4)0.015 (3)
N10.0495 (15)0.0658 (17)0.0748 (17)−0.0131 (12)−0.0125 (13)−0.0023 (14)
N20.0762 (18)0.0596 (16)0.0632 (16)−0.0274 (13)−0.0253 (13)0.0026 (12)
O10.0593 (15)0.0809 (18)0.132 (2)−0.0068 (13)−0.0088 (16)−0.0327 (17)
O20.0765 (17)0.0701 (15)0.0836 (17)−0.0239 (13)−0.0133 (13)0.0226 (12)
O30.0819 (18)0.114 (2)0.0919 (19)−0.0493 (16)−0.0209 (15)0.0420 (17)
O40.0996 (19)0.0565 (14)0.0532 (13)−0.0172 (12)−0.0177 (12)0.0036 (10)
O50.0776 (16)0.0629 (14)0.0695 (14)0.0105 (12)−0.0246 (12)0.0006 (11)

Geometric parameters (Å, °)

C1—C21.405 (4)C13—H13A0.9600
C1—N11.436 (4)C13—H13B0.9600
C1—C61.384 (4)C13—H13C0.9600
C2—C31.369 (5)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.368 (5)C14—H14C0.9600
C3—H30.9300C15—H15A0.9601
C4—C51.387 (5)C15—H15B0.9601
C4—H40.9300C15—H15C0.9601
C5—C61.383 (4)C16—O31.152 (4)
C5—H50.9300C16—O21.335 (4)
C6—C71.496 (4)C17—O21.458 (4)
C7—C111.386 (4)C17—C181.491 (6)
C7—C81.392 (4)C17—H17A0.9700
C8—C91.393 (4)C17—H17B0.9700
C8—C121.487 (4)C18—C191.481 (7)
C9—N21.340 (4)C18—C201.538 (6)
C9—C141.525 (4)C18—H180.9800
C10—N21.333 (4)C19—H19A0.9600
C10—C111.404 (4)C19—H19B0.9600
C10—C151.487 (4)C19—H19C0.9600
C11—C161.520 (4)C20—H20A0.9600
C12—O41.191 (4)C20—H20B0.9600
C12—O51.331 (4)C20—H20C0.9600
C13—O51.448 (4)N1—O11.210 (4)
C2—C1—N1122.6 (3)C9—C14—H14B109.5
C2—C1—C6122.0 (3)H14A—C14—H14B109.5
N1—C1—C6115.3 (2)C9—C14—H14C109.5
C3—C2—C1118.0 (3)H14A—C14—H14C109.5
C3—C2—H2121.0H14B—C14—H14C109.5
C1—C2—H2121.0C10—C15—H15A109.5
C2—C3—C4120.9 (3)C10—C15—H15B109.5
C2—C3—H3119.6H15A—C15—H15B109.5
C4—C3—H3119.5C10—C15—H15C109.4
C3—C4—C5120.7 (3)H15A—C15—H15C109.5
C3—C4—H4119.8H15B—C15—H15C109.5
C5—C4—H4119.6O3—C16—O2125.0 (3)
C6—C5—C4120.3 (3)O3—C16—C11124.8 (3)
C6—C5—H5119.9O2—C16—C11110.2 (3)
C4—C5—H5119.8O2—C17—C18107.9 (3)
C5—C6—C1118.1 (3)O2—C17—H17A110.2
C5—C6—C7120.1 (3)C18—C17—H17A110.2
C1—C6—C7121.8 (2)O2—C17—H17B110.1
C11—C7—C8118.4 (3)C18—C17—H17B110.0
C11—C7—C6120.8 (3)H17A—C17—H17B108.5
C8—C7—C6120.8 (2)C19—C18—C17113.8 (4)
C9—C8—C7119.0 (3)C19—C18—C20111.3 (4)
C9—C8—C12121.5 (3)C17—C18—C20108.8 (4)
C7—C8—C12119.3 (2)C19—C18—H18107.5
N2—C9—C8122.1 (3)C17—C18—H18107.6
N2—C9—C14114.9 (3)C20—C18—H18107.6
C8—C9—C14122.9 (3)C18—C19—H19A109.4
N2—C10—C11121.4 (3)C18—C19—H19B109.5
N2—C10—C15116.5 (3)H19A—C19—H19B109.5
C11—C10—C15122.1 (3)C18—C19—H19C109.6
C7—C11—C10119.4 (3)H19A—C19—H19C109.5
C7—C11—C16119.9 (3)H19B—C19—H19C109.5
C10—C11—C16120.7 (3)C18—C20—H20A109.4
O4—C12—O5123.1 (3)C18—C20—H20B109.3
O4—C12—C8124.3 (3)H20A—C20—H20B109.5
O5—C12—C8112.5 (2)C18—C20—H20C109.7
O5—C13—H13A109.5H20A—C20—H20C109.5
O5—C13—H13B109.5H20B—C20—H20C109.5
H13A—C13—H13B109.5O1—N1—C1114.7 (3)
O5—C13—H13C109.4C10—N2—C9119.6 (3)
H13A—C13—H13C109.5C16—O2—C17116.4 (3)
H13B—C13—H13C109.5C12—O5—C13116.7 (3)
C9—C14—H14A109.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.962.393.344 (5)172
C14—H14B···O4ii0.962.523.472 (5)174

Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5320).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Marciniec, B., Jaroszkiewicz, E. & Ogrodowczyk, M. (2002). Int. J. Pharm.233, 207–215. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography