PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o637.
Published online 2010 February 13. doi:  10.1107/S1600536810004824
PMCID: PMC2983561

1-Mesitylmethyl-1Hbenzotriazole 3-oxide

Abstract

In the title compound, C16H17N3O, the benzotriazole ring forms a dihedral angle of 77.25 (6)° with the phenyl ring. The benzotriazole ring is essentially planar with a maximum deviation of 0.012 (19) Å. Weak inter­molecular C—H(...)O hydrogen bonds form R 2 2(10) motifs. The crystal packing is consolidated by π—π inter­actions with centroid–centroid distances of 3.5994 (12) Å together with very weak C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o637-scheme1.jpg

Experimental

Crystal data

  • C16H17N3O
  • M r = 267.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o637-efi1.jpg
  • a = 8.6269 (19) Å
  • b = 7.3422 (4) Å
  • c = 21.890 (5) Å
  • β = 103.133 (11)°
  • V = 1350.2 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.67 mm−1
  • T = 193 K
  • 0.35 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (CORINC; Draeger & Gattow (1971 [triangle]) T min = 0.799, T max = 0.936
  • 2722 measured reflections
  • 2545 independent reflections
  • 2243 reflections with I > 2σ(I)
  • R int = 0.091
  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.132
  • S = 1.09
  • 2546 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Draeger & Gattow, 1971 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004824/bt5182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004824/bt5182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The asymmetric unit of (I) comprises of one molecule of the title compound (Fig 1). The bond lengths and angles are found to have normal values (Allen et al., 1987). The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.012 (19) Å for atom C5. The mean plane of the benzotriazole ring (N1/N9/N8/C2—C7) forming a dihedral angle of 77.25 (6) Å with the mean plane of the phenyl ring (C12—C17). An intermolecular weak C—H···O hydrogen bonding generates a ring of motif R22(10) (Bernstein et al., 1995)

The crystal packing is stabilized by π—π stacking interactions [Cg1—Cg2i= of 3.5994 (12) Å; Cg1: (N1/N9/N8/C7/C2); Cg2:(C2—C): Symmetry code:(i) 1-X, –Y, –Z] together with weak C—H···π interactions.

Experimental

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and sodium salt of 1-Hydroxybenzotriazole (0.157,1 mmol) in ethanol (20 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in ethanol and chloroform (1: 1v/v) and allowed to undergo slow evaporation. Colourless block shaped crystals were obtained after a week.

Refinement

All the H atoms were positioned geometrically (C—H=0.95 Å (aromatic); C—H=0.98 (methyl) or C—H=0.99 Å (methylene) and refined using a riding model with, Uiso(H)=1.2Uequ(C, methylene) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Crystal data

C16H17N3OF(000) = 568
Mr = 267.33Dx = 1.315 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.6269 (19) Åθ = 35–48°
b = 7.3422 (4) ŵ = 0.67 mm1
c = 21.890 (5) ÅT = 193 K
β = 103.133 (11)°Block, colourless
V = 1350.2 (4) Å30.35 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2243 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.091
graphiteθmax = 69.9°, θmin = 4.2°
ω/2θ scansh = 0→10
Absorption correction: ψ scan (CORINC; Draeger & Gattow (1971)k = −8→0
Tmin = 0.799, Tmax = 0.936l = −26→25
2722 measured reflections3 standard reflections every 60 min
2545 independent reflections intensity decay: 2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0705P)2 + 0.4335P] where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.70466 (16)−0.01341 (18)0.11411 (6)0.0277 (3)
C20.71052 (18)0.0150 (2)0.05338 (7)0.0272 (3)
C30.7611 (2)−0.0918 (2)0.00798 (8)0.0369 (4)
H30.7999−0.21230.01670.044*
C40.7513 (2)−0.0124 (3)−0.04902 (8)0.0411 (4)
H40.7846−0.0801−0.08080.049*
C50.6933 (2)0.1673 (3)−0.06290 (8)0.0364 (4)
H50.69000.2166−0.10330.044*
C60.64222 (18)0.2710 (2)−0.01957 (7)0.0317 (4)
H60.60230.3909−0.02860.038*
C70.65231 (17)0.1899 (2)0.03868 (7)0.0262 (3)
N80.61389 (15)0.25395 (18)0.09300 (6)0.0285 (3)
N90.64505 (16)0.13267 (18)0.13845 (6)0.0294 (3)
O100.56088 (16)0.41370 (17)0.10077 (6)0.0416 (3)
C110.7402 (2)−0.1818 (2)0.15108 (7)0.0308 (4)
H11A0.8203−0.25290.13520.037*
H11B0.6421−0.25620.14500.037*
C120.80200 (18)−0.1471 (2)0.22014 (7)0.0258 (3)
C130.96499 (17)−0.1154 (2)0.24416 (7)0.0278 (3)
C141.01987 (18)−0.0911 (2)0.30840 (8)0.0307 (4)
H141.1305−0.07280.32490.037*
C150.9183 (2)−0.0928 (2)0.34912 (7)0.0311 (4)
C160.75646 (19)−0.1203 (2)0.32423 (7)0.0307 (4)
H160.6850−0.11970.35150.037*
C170.69733 (18)−0.1485 (2)0.26051 (7)0.0272 (3)
C181.0814 (2)−0.1051 (2)0.20228 (9)0.0396 (4)
H18A1.0922−0.22560.18440.059*
H18B1.1852−0.06480.22690.059*
H18C1.0424−0.01810.16830.059*
C190.9812 (2)−0.0637 (3)0.41845 (8)0.0460 (5)
H19A0.9922−0.18160.44000.069*
H19B0.90700.01320.43480.069*
H19C1.0853−0.00390.42570.069*
C200.52065 (19)−0.1764 (3)0.23637 (8)0.0393 (4)
H20A0.4771−0.07710.20760.059*
H20B0.4684−0.17720.27170.059*
H20C0.5017−0.29290.21410.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0360 (7)0.0243 (7)0.0232 (6)0.0026 (5)0.0075 (5)0.0011 (5)
C20.0279 (7)0.0279 (8)0.0258 (7)−0.0008 (6)0.0060 (6)−0.0003 (6)
C30.0467 (9)0.0346 (9)0.0297 (8)0.0077 (7)0.0096 (7)−0.0025 (7)
C40.0477 (10)0.0471 (11)0.0304 (9)0.0048 (8)0.0131 (7)−0.0050 (8)
C50.0394 (9)0.0446 (10)0.0249 (8)−0.0020 (8)0.0064 (7)0.0047 (7)
C60.0304 (8)0.0338 (9)0.0290 (8)0.0001 (6)0.0028 (6)0.0053 (7)
C70.0242 (7)0.0283 (8)0.0255 (7)−0.0007 (6)0.0042 (6)−0.0001 (6)
N80.0315 (7)0.0251 (7)0.0284 (6)0.0036 (5)0.0060 (5)0.0007 (5)
N90.0364 (7)0.0255 (7)0.0270 (6)0.0032 (5)0.0083 (5)−0.0002 (5)
O100.0574 (8)0.0284 (6)0.0406 (7)0.0164 (5)0.0141 (6)0.0016 (5)
C110.0442 (9)0.0216 (8)0.0261 (8)0.0000 (6)0.0070 (7)0.0023 (6)
C120.0312 (8)0.0195 (7)0.0263 (7)0.0013 (6)0.0057 (6)0.0023 (6)
C130.0304 (8)0.0200 (7)0.0344 (8)0.0026 (6)0.0099 (6)0.0005 (6)
C140.0262 (7)0.0231 (8)0.0397 (9)0.0012 (6)0.0011 (6)−0.0001 (6)
C150.0384 (8)0.0250 (8)0.0274 (8)0.0030 (6)0.0023 (6)0.0019 (6)
C160.0349 (8)0.0296 (8)0.0295 (8)0.0035 (6)0.0112 (6)0.0061 (6)
C170.0285 (7)0.0250 (8)0.0275 (8)0.0003 (6)0.0053 (6)0.0065 (6)
C180.0378 (9)0.0342 (9)0.0523 (11)−0.0014 (7)0.0217 (8)−0.0040 (8)
C190.0543 (11)0.0473 (11)0.0313 (9)0.0008 (9)−0.0006 (8)−0.0014 (8)
C200.0290 (8)0.0495 (11)0.0383 (9)−0.0042 (7)0.0053 (7)0.0096 (8)

Geometric parameters (Å, °)

N1—N91.3502 (18)C12—C131.404 (2)
N1—C21.358 (2)C13—C141.390 (2)
N1—C111.4713 (19)C13—C181.508 (2)
C2—C71.390 (2)C14—C151.384 (2)
C2—C31.411 (2)C14—H140.9500
C3—C41.362 (2)C15—C161.393 (2)
C3—H30.9500C15—C191.506 (2)
C4—C51.419 (3)C16—C171.388 (2)
C4—H40.9500C16—H160.9500
C5—C61.365 (2)C17—C201.509 (2)
C5—H50.9500C18—H18A0.9800
C6—C71.392 (2)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—N81.387 (2)C19—H19A0.9800
N8—O101.2842 (17)C19—H19B0.9800
N8—N91.3166 (18)C19—H19C0.9800
C11—C121.506 (2)C20—H20A0.9800
C11—H11A0.9900C20—H20B0.9800
C11—H11B0.9900C20—H20C0.9800
C12—C171.400 (2)
N9—N1—C2111.49 (12)C14—C13—C12118.82 (14)
N9—N1—C11120.06 (12)C14—C13—C18119.21 (14)
C2—N1—C11128.19 (13)C12—C13—C18121.96 (15)
N1—C2—C7106.08 (13)C15—C14—C13122.03 (14)
N1—C2—C3133.66 (15)C15—C14—H14119.0
C7—C2—C3120.26 (14)C13—C14—H14119.0
C4—C3—C2116.27 (16)C14—C15—C16118.30 (14)
C4—C3—H3121.9C14—C15—C19120.77 (15)
C2—C3—H3121.9C16—C15—C19120.92 (15)
C3—C4—C5122.64 (16)C17—C16—C15121.43 (14)
C3—C4—H4118.7C17—C16—H16119.3
C5—C4—H4118.7C15—C16—H16119.3
C6—C5—C4121.56 (15)C16—C17—C12119.41 (14)
C6—C5—H5119.2C16—C17—C20118.91 (14)
C4—C5—H5119.2C12—C17—C20121.67 (14)
C5—C6—C7115.80 (16)C13—C18—H18A109.5
C5—C6—H6122.1C13—C18—H18B109.5
C7—C6—H6122.1H18A—C18—H18B109.5
N8—C7—C2105.00 (13)C13—C18—H18C109.5
N8—C7—C6131.53 (15)H18A—C18—H18C109.5
C2—C7—C6123.47 (15)H18B—C18—H18C109.5
O10—N8—N9122.37 (13)C15—C19—H19A109.5
O10—N8—C7125.79 (13)C15—C19—H19B109.5
N9—N8—C7111.77 (13)H19A—C19—H19B109.5
N8—N9—N1105.66 (12)C15—C19—H19C109.5
N1—C11—C12113.08 (13)H19A—C19—H19C109.5
N1—C11—H11A109.0H19B—C19—H19C109.5
C12—C11—H11A109.0C17—C20—H20A109.5
N1—C11—H11B109.0C17—C20—H20B109.5
C12—C11—H11B109.0H20A—C20—H20B109.5
H11A—C11—H11B107.8C17—C20—H20C109.5
C17—C12—C13119.98 (14)H20A—C20—H20C109.5
C17—C12—C11120.02 (14)H20B—C20—H20C109.5
C13—C12—C11120.00 (14)
N9—N1—C2—C70.47 (17)C11—N1—N9—N8−174.86 (13)
C11—N1—C2—C7174.51 (14)N9—N1—C11—C12−35.7 (2)
N9—N1—C2—C3−179.86 (17)C2—N1—C11—C12150.74 (15)
C11—N1—C2—C3−5.8 (3)N1—C11—C12—C1795.32 (17)
N1—C2—C3—C4−178.70 (17)N1—C11—C12—C13−85.41 (18)
C7—C2—C3—C40.9 (2)C17—C12—C13—C141.8 (2)
C2—C3—C4—C5−0.2 (3)C11—C12—C13—C14−177.43 (13)
C3—C4—C5—C6−0.6 (3)C17—C12—C13—C18−177.49 (14)
C4—C5—C6—C70.6 (2)C11—C12—C13—C183.2 (2)
N1—C2—C7—N8−0.46 (16)C12—C13—C14—C15−1.6 (2)
C3—C2—C7—N8179.81 (14)C18—C13—C14—C15177.75 (14)
N1—C2—C7—C6178.74 (14)C13—C14—C15—C160.1 (2)
C3—C2—C7—C6−1.0 (2)C13—C14—C15—C19−179.23 (15)
C5—C6—C7—N8179.14 (15)C14—C15—C16—C171.1 (2)
C5—C6—C7—C20.2 (2)C19—C15—C16—C17−179.53 (16)
C2—C7—N8—O10177.40 (14)C15—C16—C17—C12−0.8 (2)
C6—C7—N8—O10−1.7 (3)C15—C16—C17—C20−179.64 (15)
C2—C7—N8—N90.32 (17)C13—C12—C17—C16−0.7 (2)
C6—C7—N8—N9−178.79 (15)C11—C12—C17—C16178.61 (14)
O10—N8—N9—N1−177.24 (13)C13—C12—C17—C20178.11 (15)
C7—N8—N9—N1−0.04 (17)C11—C12—C17—C20−2.6 (2)
C2—N1—N9—N8−0.28 (17)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10i0.952.353.190 (2)147
C16—H16···O10ii0.952.583.506 (2)165
C18—H18A···Cg3iii0.982.983.810 (18)144

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5182).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem.Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Draeger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography