PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o673.
Published online 2010 February 20. doi:  10.1107/S1600536810006136
PMCID: PMC2983556

2-Phenyl­imidazolium chloride monohydrate

Abstract

In the title hydrated molecular salt, C9H9N2 +·Cl·H2O, the dihedral angle between the five- and six-membered rings in the cation is 18.00 (2)°. O—H(...)Cl, N—H(...)O and N—H(...)Cl hrdrogen-bonding inter­actions are present in the crystal structure.

Related literature

For related 2-phenyl­imidazolium nitrate structures, see: Zhang et al. (2007 [triangle]); Xia et al. (2009 [triangle]). For a phosphate salt of phenyl­imadazole, see: Xia & Yao (2010 [triangle]) and for a silver complex, see: Han et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o673-scheme1.jpg

Experimental

Crystal data

  • C9H9N2 +·Cl·H2O
  • M r = 198.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o673-efi1.jpg
  • a = 7.2751 (10) Å
  • b = 8.8816 (13) Å
  • c = 9.3228 (10) Å
  • α = 105.486 (11)°
  • β = 106.516 (11)°
  • γ = 109.337 (13)°
  • V = 499.65 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 K
  • 0.31 × 0.24 × 0.22 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.52, T max = 0.78
  • 3460 measured reflections
  • 2030 independent reflections
  • 1198 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.074
  • S = 0.81
  • 2030 reflections
  • 126 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006136/om2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006136/om2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Yuncheng University for support.

supplementary crystallographic information

Comment

The 2-phenylimidazolium nitrate structure has been reported as a hemihydrate (Zhang et al., 2007) and as a hydrate (Xia et al., 2009). Here we report the synthesis and structure of the chloride hydrate, namely, C9H11ClN2O.

The asymmetric unit of the title compound contains one 2-phenylimidazolium cation, one chloride anion and one water molecule (Fig. 1). There are O—H···Cl, N—H···O and N—H···Cl H-bonding interactions in the structure (Table I).

Experimental

A mixture of 2-phenylimidazole (0.5 mmol), hydrochloric acid (0.5 mmol) and H2O (30 mmol) was mixed. After two weeks, colorless crystals were obtained at room temperature (22% yield).

Refinement

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atom was located in a difference Fourier map, and was refined freely.

Figures

Fig. 1.
The structure of the title compound showing the atomic numbering scheme and displacement ellipsoids at the 30% probability level.

Crystal data

C9H9N2+·Cl·H2OZ = 2
Mr = 198.65F(000) = 208
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2751 (10) ÅCell parameters from 2030 reflections
b = 8.8816 (13) Åθ = 2.5–26.4°
c = 9.3228 (10) ŵ = 0.34 mm1
α = 105.486 (11)°T = 293 K
β = 106.516 (11)°Block, colorless
γ = 109.337 (13)°0.31 × 0.24 × 0.22 mm
V = 499.65 (15) Å3

Data collection

Oxford Diffraction Gemini R Ultra diffractometer2030 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scanh = −6→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −10→11
Tmin = 0.52, Tmax = 0.78l = −11→9
3460 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.81w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3
2030 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4640 (3)0.2399 (2)0.3466 (2)0.0617 (5)
H1A0.51400.25300.45490.074*
C20.4744 (3)0.3668 (2)0.2929 (2)0.0653 (6)
H2A0.53220.48490.35700.078*
C30.3188 (3)0.1197 (2)0.0774 (2)0.0437 (4)
C40.2201 (3)−0.0061 (2)−0.0909 (2)0.0441 (4)
C50.1124 (3)−0.1827 (2)−0.1299 (2)0.0548 (5)
H50.1007−0.2215−0.04820.066*
C60.0231 (3)−0.3006 (2)−0.2889 (2)0.0665 (6)
H6−0.0509−0.4186−0.31460.080*
C70.0428 (3)−0.2445 (3)−0.4101 (3)0.0693 (6)
H7−0.0167−0.3247−0.51740.083*
C80.1500 (3)−0.0708 (3)−0.3728 (2)0.0661 (6)
H80.1634−0.0336−0.45510.079*
C90.2382 (3)0.0496 (2)−0.2145 (2)0.0550 (5)
H90.30950.1676−0.19030.066*
N10.3844 (2)0.29054 (16)0.12684 (18)0.0543 (4)
H10.37190.34480.06350.065*
N20.3658 (2)0.08756 (17)0.21156 (17)0.0504 (4)
H20.3385−0.01380.21290.060*
O1W0.2454 (3)0.4594 (2)−0.0598 (3)0.0680 (4)
HW110.249 (4)0.538 (3)0.019 (3)0.114 (11)*
HW120.107 (5)0.407 (3)−0.117 (3)0.122 (11)*
Cl10.26211 (8)0.73220 (5)0.25005 (5)0.0634 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0669 (14)0.0637 (12)0.0518 (12)0.0312 (10)0.0177 (10)0.0234 (10)
C20.0746 (14)0.0527 (11)0.0572 (14)0.0266 (10)0.0189 (11)0.0164 (9)
C30.0437 (10)0.0496 (10)0.0537 (11)0.0267 (8)0.0245 (8)0.0305 (8)
C40.0444 (10)0.0503 (10)0.0551 (11)0.0291 (8)0.0245 (9)0.0311 (8)
C50.0648 (13)0.0558 (11)0.0580 (12)0.0308 (10)0.0284 (10)0.0340 (9)
C60.0788 (15)0.0552 (11)0.0645 (14)0.0289 (10)0.0271 (11)0.0255 (10)
C70.0787 (15)0.0748 (14)0.0579 (13)0.0407 (12)0.0277 (11)0.0229 (10)
C80.0818 (15)0.0869 (14)0.0602 (14)0.0500 (12)0.0389 (11)0.0459 (11)
C90.0628 (12)0.0587 (11)0.0663 (13)0.0335 (10)0.0350 (10)0.0397 (10)
N10.0650 (10)0.0474 (9)0.0635 (11)0.0286 (7)0.0295 (8)0.0324 (7)
N20.0566 (10)0.0501 (8)0.0560 (10)0.0293 (7)0.0218 (8)0.0316 (7)
O1W0.0656 (12)0.0655 (9)0.0919 (12)0.0366 (8)0.0345 (9)0.0460 (9)
Cl10.0715 (3)0.0529 (3)0.0548 (3)0.0174 (2)0.0143 (2)0.0311 (2)

Geometric parameters (Å, °)

C1—C21.339 (2)C6—C71.375 (3)
C1—N21.366 (2)C6—H60.9300
C1—H1A0.9300C7—C81.368 (3)
C2—N11.362 (2)C7—H70.9300
C2—H2A0.9300C8—C91.378 (3)
C3—N11.3282 (19)C8—H80.9300
C3—N21.332 (2)C9—H90.9300
C3—C41.455 (2)N1—H10.8600
C4—C51.388 (2)N2—H20.8600
C4—C91.392 (2)O1W—HW110.86 (3)
C5—C61.374 (3)O1W—HW120.88 (3)
C5—H50.9300
C2—C1—N2106.67 (17)C7—C6—H6119.9
C2—C1—H1A126.7C8—C7—C6120.01 (19)
N2—C1—H1A126.7C8—C7—H7120.0
C1—C2—N1107.20 (16)C6—C7—H7120.0
C1—C2—H2A126.4C7—C8—C9120.68 (17)
N1—C2—H2A126.4C7—C8—H8119.7
N1—C3—N2106.63 (14)C9—C8—H8119.7
N1—C3—C4126.29 (15)C8—C9—C4119.67 (16)
N2—C3—C4127.06 (15)C8—C9—H9120.2
C5—C4—C9119.14 (16)C4—C9—H9120.2
C5—C4—C3120.82 (15)C3—N1—C2109.75 (14)
C9—C4—C3120.01 (15)C3—N1—H1125.1
C6—C5—C4120.30 (16)C2—N1—H1125.1
C6—C5—H5119.8C3—N2—C1109.74 (14)
C4—C5—H5119.8C3—N2—H2125.1
C5—C6—C7120.18 (18)C1—N2—H2125.1
C5—C6—H6119.9HW11—O1W—HW1297 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.962.774 (2)157
N2—H2···Cl1i0.862.283.1371 (14)172
O1W—HW11···Cl10.86 (3)2.33 (3)3.177 (2)174 (2)
O1W—HW12···Cl1ii0.88 (3)2.32 (3)3.190 (2)176 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2320).

References

  • Han, S., Li, W.-C. & Xia, D.-C. (2010). Acta Cryst. E66, m3. [PMC free article] [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283. [PMC free article] [PubMed]
  • Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o609. [PMC free article] [PubMed]
  • Zhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438–o2439.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography