PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o546.
Published online 2010 February 6. doi:  10.1107/S1600536810003594
PMCID: PMC2983553

4,4′-Bipyridine–3-nitro­benzoic acid (1/2)

Abstract

The title compound, C10H8N2·2C7H5NO4,was obtained unintentionally as the harvested product of the hydro­thermal reaction between Co(OAc)2·4H2O and 4,4′-bipyridine in the presence of 3-nitro­phthalic acid. In the reaction, 3-nitro­phthalic acid is transformed into 3-nitro­benzoic acid by an in situ deca­rboxylation reaction, in which the carboxyl­ate group is not deprotonated and is uncoordinated. In the crystal, the uncoordinated 3-nitro­benzoic acid and free 4,4′-bipyridine mol­ecules are linked alternately by O—H(...)N hydrogen bonds into chains, which are assembled by C—H(...)O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For the use of 3-nitro­phthalic acid in the self-assembly of coordination compounds, see: Deng et al. (2007a [triangle],b [triangle]); Huang et al. (2007 [triangle]); Song et al. (2007 [triangle]); Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o546-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·2C7H5NO4
  • M r = 490.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o546-efi1.jpg
  • a = 26.489 (7) Å
  • b = 6.7757 (14) Å
  • c = 13.291 (3) Å
  • β = 112.19 (3)°
  • V = 2208.8 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 113 K
  • 0.20 × 0.12 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.978, T max = 0.989
  • 7177 measured reflections
  • 1935 independent reflections
  • 1646 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.09
  • 1935 reflections
  • 166 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003594/bg2325sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003594/bg2325Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Tianjin Polytechnic University for financial support.

supplementary crystallographic information

Comment

3-nitrophthic acid acting as a multifunctional organic ligand has been widely used in the self-assembly of various coordination compounds (Deng et al., 2007a,b; Huang et al., 2007; Song et al., 2007, Wang et al., 2009). The title compound were obtained unintentionally as the harvested product of the hydrothermal reaction between Co(oAc)2.4H2O and 4,4'-bipyridine in the presence of 3-nitrophthic acid. In the title compound, 3-nitrophthlic acid is transformed into 3-nitrobenzoic acid by in situ decarboxylation reaction, in which the carboxylate group is not deprotoned and is uncoordinated. The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are normal within experimental error.

The crystal packing of the title compound is illustrated in Fig. 2. The uncoordinated 3-nitrobenzoic acid and free 4,4'-bipyridine molecules are linked alternately by hydrogen bonds (O—H···O) into one-dimensional chains. Furthermore, these one-dimensional chains are assembled by hydrogen bonds(C—H···O) into three-dimensional supramolecular network.

Experimental

A mixture of 3-nitrophthalic acid(0.020 g, 0.1 mmol), Co(oAc)2.4H2O(0.025 g, 0.1 mmol), 4,4'-bipyridine (0.019 g, 0.1 mmol), deionized water (8 ml) was sealed in a Teflon-lined stainless steel vessel (23 ml) and heated at 160 °C for 4 days under autogenous pressure and then cooled slowly to room temperature. The solution was filtered and after allowed to stand for a few weeks at room temperature, purple-red crystals were obtained.

Refinement

The O-H hydrogen atom was found in a difference Fourier map and fixed during refinement at a O–H distance of 0.85 Å, with Uiso(H)=1.2 Ueq(O). The H atoms of C–H and N–H groups were treated as riding, with C–H = 0.97 Å and N–H = 0.86 Å and Uiso (H) = 1.2 Ueq(C,N).

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound along b axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

C10H8N2·2C7H5NO4F(000) = 1016
Mr = 490.42Dx = 1.475 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2874 reflections
a = 26.489 (7) Åθ = 3.1–27.4°
b = 6.7757 (14) ŵ = 0.11 mm1
c = 13.291 (3) ÅT = 113 K
β = 112.19 (3)°Plate, purple–red
V = 2208.8 (9) Å30.20 × 0.12 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer1935 independent reflections
Radiation source: rotating anode1646 reflections with I > 2σ(I)
confocalRint = 0.029
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω and [var phi] scansh = −31→31
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −7→8
Tmin = 0.978, Tmax = 0.989l = −13→15
7177 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0461P] where P = (Fo2 + 2Fc2)/3
1935 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.30213 (4)0.58310 (15)0.39895 (8)0.0316 (3)
O20.26214 (4)0.60692 (13)0.21797 (8)0.0238 (3)
H20.2955 (4)0.608 (2)0.2257 (14)0.036*
O30.01600 (4)0.66151 (15)0.13387 (9)0.0328 (3)
O40.06802 (4)0.65732 (16)0.04209 (8)0.0363 (3)
N10.06088 (4)0.64662 (15)0.12810 (10)0.0223 (3)
N20.13751 (4)0.10542 (14)0.27135 (9)0.0189 (3)
C10.26146 (5)0.59392 (18)0.31583 (11)0.0204 (3)
C20.20523 (5)0.59219 (17)0.31772 (11)0.0189 (3)
C30.19834 (5)0.56014 (18)0.41546 (11)0.0231 (3)
H30.22870.54200.47910.028*
C40.14675 (6)0.55513 (18)0.41864 (12)0.0247 (3)
H40.14270.53340.48430.030*
C50.10097 (5)0.58232 (18)0.32441 (11)0.0224 (3)
H50.06610.57810.32560.027*
C60.10882 (5)0.61589 (17)0.22863 (11)0.0188 (3)
C70.15989 (5)0.62214 (17)0.22295 (11)0.0181 (3)
H70.16370.64580.15730.022*
C80.09648 (5)0.14365 (18)0.17646 (11)0.0200 (3)
H80.10490.16960.11580.024*
C90.04234 (5)0.14626 (18)0.16471 (11)0.0193 (3)
H90.01520.17580.09780.023*
C100.02882 (5)0.10427 (17)0.25412 (11)0.0175 (3)
C110.07148 (5)0.06255 (18)0.35231 (11)0.0195 (3)
H110.06420.03260.41380.023*
C120.12465 (5)0.06609 (17)0.35760 (11)0.0197 (3)
H120.15270.04000.42390.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0164 (5)0.0538 (7)0.0208 (6)−0.0010 (4)0.0028 (4)0.0011 (4)
O20.0140 (5)0.0381 (6)0.0195 (5)0.0001 (4)0.0066 (4)0.0023 (4)
O30.0145 (5)0.0425 (6)0.0437 (7)0.0011 (4)0.0134 (5)−0.0002 (5)
O40.0229 (6)0.0611 (7)0.0243 (6)0.0058 (5)0.0083 (5)0.0070 (5)
N10.0167 (6)0.0213 (6)0.0295 (7)0.0001 (4)0.0095 (5)−0.0005 (5)
N20.0153 (6)0.0180 (6)0.0226 (6)0.0008 (4)0.0064 (5)−0.0013 (4)
C10.0190 (7)0.0219 (7)0.0205 (7)−0.0017 (5)0.0075 (6)−0.0003 (5)
C20.0185 (7)0.0183 (6)0.0203 (7)−0.0013 (5)0.0078 (6)−0.0015 (5)
C30.0233 (7)0.0260 (7)0.0195 (7)−0.0018 (5)0.0076 (6)0.0001 (5)
C40.0302 (8)0.0256 (7)0.0235 (8)−0.0019 (6)0.0161 (6)0.0002 (6)
C50.0227 (8)0.0179 (6)0.0321 (8)−0.0014 (5)0.0167 (6)−0.0026 (5)
C60.0169 (7)0.0154 (6)0.0233 (8)−0.0005 (5)0.0067 (6)−0.0018 (5)
C70.0201 (7)0.0166 (6)0.0198 (7)−0.0013 (5)0.0100 (6)−0.0018 (5)
C80.0189 (7)0.0192 (7)0.0233 (8)−0.0017 (5)0.0096 (6)−0.0009 (5)
C90.0150 (7)0.0197 (7)0.0209 (7)0.0005 (5)0.0042 (6)0.0006 (5)
C100.0153 (7)0.0147 (6)0.0220 (7)−0.0007 (5)0.0067 (6)−0.0025 (5)
C110.0187 (7)0.0200 (6)0.0203 (7)0.0009 (5)0.0079 (6)0.0001 (5)
C120.0150 (7)0.0197 (7)0.0211 (7)0.0018 (5)0.0030 (6)−0.0009 (5)

Geometric parameters (Å, °)

O1—C11.2197 (17)C4—H40.9300
O2—C11.3106 (17)C5—C61.3839 (19)
O2—H20.850 (9)C5—H50.9300
O3—N11.2242 (14)C6—C71.3838 (18)
O4—N11.2294 (14)C7—H70.9300
N1—C61.4695 (18)C8—C91.3827 (18)
N2—C121.3402 (18)C8—H80.9300
N2—C81.3430 (18)C9—C101.3938 (19)
C1—C21.4991 (19)C9—H90.9300
C2—C71.388 (2)C10—C111.3950 (19)
C2—C31.3954 (19)C10—C10i1.489 (2)
C3—C41.3835 (19)C11—C121.3836 (18)
C3—H30.9300C11—H110.9300
C4—C51.388 (2)C12—H120.9300
C1—O2—H2106.5 (12)C7—C6—N1118.22 (12)
O3—N1—O4123.21 (12)C5—C6—N1118.77 (11)
O3—N1—C6118.74 (12)C6—C7—C2118.33 (13)
O4—N1—C6118.05 (10)C6—C7—H7120.8
C12—N2—C8117.68 (11)C2—C7—H7120.8
O1—C1—O2124.35 (13)N2—C8—C9123.06 (13)
O1—C1—C2121.85 (13)N2—C8—H8118.5
O2—C1—C2113.79 (12)C9—C8—H8118.5
C7—C2—C3119.66 (13)C8—C9—C10119.38 (12)
C7—C2—C1120.54 (12)C8—C9—H9120.3
C3—C2—C1119.80 (12)C10—C9—H9120.3
C4—C3—C2120.68 (13)C9—C10—C11117.44 (12)
C4—C3—H3119.7C9—C10—C10i121.59 (14)
C2—C3—H3119.7C11—C10—C10i120.97 (15)
C3—C4—C5120.38 (13)C12—C11—C10119.56 (13)
C3—C4—H4119.8C12—C11—H11120.2
C5—C4—H4119.8C10—C11—H11120.2
C6—C5—C4117.93 (12)N2—C12—C11122.87 (12)
C6—C5—H5121.0N2—C12—H12118.6
C4—C5—H5121.0C11—C12—H12118.6
C7—C6—C5123.01 (13)
O1—C1—C2—C7174.30 (12)O4—N1—C6—C5−173.13 (11)
O2—C1—C2—C7−6.02 (16)C5—C6—C7—C20.37 (18)
O1—C1—C2—C3−5.73 (18)N1—C6—C7—C2−179.69 (10)
O2—C1—C2—C3173.94 (10)C3—C2—C7—C6−1.03 (17)
C7—C2—C3—C40.92 (18)C1—C2—C7—C6178.94 (10)
C1—C2—C3—C4−179.05 (11)C12—N2—C8—C90.77 (17)
C2—C3—C4—C5−0.11 (18)N2—C8—C9—C10−1.16 (18)
C3—C4—C5—C6−0.54 (18)C8—C9—C10—C110.43 (16)
C4—C5—C6—C70.42 (18)C8—C9—C10—C10i−179.76 (8)
C4—C5—C6—N1−179.52 (10)C9—C10—C11—C120.59 (17)
O3—N1—C6—C7−172.63 (10)C10i—C10—C11—C12−179.22 (8)
O4—N1—C6—C76.93 (16)C8—N2—C12—C110.33 (17)
O3—N1—C6—C57.31 (16)C10—C11—C12—N2−1.01 (18)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N2ii0.85 (1)1.76 (1)2.608 (2)175 (2)
C5—H5···O3i0.932.493.390 (2)162
C9—H9···O4iii0.932.553.436 (2)159
C12—H12···O1iv0.932.353.242 (2)160

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (i) −x, y, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2325).

References

  • Deng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007a). Chin. J. Struct. Chem.26, 642–648.
  • Deng, Y. H., Wang, S. Y., Liu, J., Yang, Y. L., Zhang, F. & Ma, H. W. (2007b). Acta Chim. Sin.65, 809–815.
  • Huang, Y., Yan, B., Shao, M. & Chen, Z. X. (2007). J. Mol. Struct.871, 59–66.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem.21, 150–155.
  • Wang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42–m44. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography