PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o663.
Published online 2010 February 20. doi:  10.1107/S1600536810005969
PMCID: PMC2983551

2-Amino-5-bromo­pyridine–benzoic acid (1/1)

Abstract

In the title adduct, C5H5BrN2·C7H6O2, the carboxyl group of the benzoic acid mol­ecule is twisted away from the attached ring by 12.97 (11)°. The 2-amino-5-bromo­pyridine mol­ecules inter­act with the carboxylic group of neighbouring benzoic acid mol­ecules through N—H(...)O and O—H(...)N hydrogen bonds, forming cyclic R 2 2(8) hydrogen-bonded motifs and linking the mol­ecules into a two-dimensional network lying parallel to (100). The crystal structure is further stabilized by weak C—H(...)O hydrogen bonds.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Goubitz et al. (2001 [triangle]); Vaday & Foxman (1999 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o663-scheme1.jpg

Experimental

Crystal data

  • C5H5BrN2·C7H6O2
  • M r = 295.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o663-efi1.jpg
  • a = 18.5614 (16) Å
  • b = 5.1769 (5) Å
  • c = 12.3613 (11) Å
  • β = 97.016 (2)°
  • V = 1178.91 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.48 mm−1
  • T = 100 K
  • 0.61 × 0.21 × 0.07 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.228, T max = 0.788
  • 19825 measured reflections
  • 5495 independent reflections
  • 3709 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.123
  • S = 1.01
  • 5495 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 1.25 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005969/rz2420sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005969/rz2420Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported in the literature. In the present study, the hydrogen-bonding patterns in the 2-amino-5-bromopyridine benzoic acid (1/1) cocrystal are investigated.

The asymmetric unit (Fig 1), contains one 2-amino-5-bromopyridine molecule and one benzoic acid molecule. The 2-amino-5-bromopyridine molecule is planar, with a maximum deviation of 0.024 (2)Å for atom N2. The carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 12.97 (11)° . The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2-amino-5-bromopyridine molecules interact with the carboxylic group of the respective benzoic acid molecules through N2—H2A···O2 and O1—H1···N1 hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8) (Bernstein et al., 1995), and linking the molecules into 2-dimensional networks parallel to the (100) plane. The crystal structure is further stabilized by strong N2—H2B···O1 and weak C7—H7···O2 (Table 1) hydrogen bonds.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and benzoic acid (61 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.

Crystal data

C5H5BrN2·C7H6O2F(000) = 592
Mr = 295.14Dx = 1.663 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3648 reflections
a = 18.5614 (16) Åθ = 3.8–32.0°
b = 5.1769 (5) ŵ = 3.48 mm1
c = 12.3613 (11) ÅT = 100 K
β = 97.016 (2)°Plate, colourless
V = 1178.91 (19) Å30.61 × 0.21 × 0.07 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer5495 independent reflections
Radiation source: fine-focus sealed tube3709 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 35.9°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −30→30
Tmin = 0.228, Tmax = 0.788k = −8→8
19825 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
5495 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = −0.50 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.470134 (11)0.30630 (5)0.886018 (18)0.02683 (8)
N10.31375 (10)−0.1799 (3)0.73265 (14)0.0191 (3)
N20.25884 (11)−0.2217 (4)0.55605 (15)0.0252 (4)
H2A0.2364−0.35580.57580.030*
H2B0.2519−0.17040.48940.030*
C10.30452 (10)−0.0928 (4)0.62906 (16)0.0188 (3)
C20.34283 (11)0.1260 (4)0.59759 (17)0.0214 (4)
H20.33510.18610.52620.026*
C30.39160 (12)0.2490 (4)0.67336 (19)0.0231 (4)
H30.41720.39300.65430.028*
C40.40175 (11)0.1516 (4)0.78013 (17)0.0210 (4)
C50.36211 (11)−0.0591 (4)0.80675 (16)0.0206 (4)
H50.3688−0.12040.87800.025*
O10.23842 (7)0.4732 (3)0.82571 (10)0.0188 (3)
H10.26680.55500.79290.028*
O20.19345 (9)0.3546 (3)0.65709 (11)0.0217 (3)
C70.13808 (11)0.1436 (4)0.91317 (15)0.0186 (4)
H70.16160.26600.96000.022*
C80.09178 (11)−0.0370 (4)0.95201 (16)0.0215 (4)
H80.0842−0.03411.02500.026*
C90.05710 (11)−0.2199 (4)0.88304 (18)0.0215 (4)
H90.0265−0.34010.90970.026*
C100.06795 (12)−0.2244 (4)0.77347 (18)0.0217 (4)
H100.0446−0.34770.72690.026*
C110.11352 (10)−0.0450 (4)0.73404 (15)0.0191 (3)
H110.1205−0.04730.66080.023*
C120.14884 (10)0.1389 (4)0.80347 (15)0.0163 (3)
C130.19580 (10)0.3321 (4)0.75609 (15)0.0163 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02372 (11)0.02522 (13)0.03212 (12)−0.00568 (8)0.00565 (8)−0.00818 (9)
N10.0222 (7)0.0160 (8)0.0196 (7)−0.0029 (6)0.0045 (6)−0.0009 (6)
N20.0331 (9)0.0235 (9)0.0182 (7)−0.0074 (8)0.0000 (7)0.0037 (7)
C10.0201 (8)0.0154 (8)0.0212 (8)0.0012 (7)0.0041 (7)0.0016 (7)
C20.0221 (8)0.0194 (9)0.0239 (8)0.0008 (7)0.0076 (7)0.0056 (8)
C30.0208 (8)0.0181 (9)0.0320 (10)−0.0006 (7)0.0097 (8)0.0032 (8)
C40.0191 (8)0.0176 (9)0.0268 (9)−0.0005 (7)0.0053 (7)−0.0045 (7)
C50.0220 (8)0.0194 (9)0.0208 (8)−0.0005 (8)0.0043 (7)0.0011 (7)
O10.0209 (6)0.0193 (7)0.0159 (6)−0.0052 (6)0.0013 (5)0.0003 (5)
O20.0310 (7)0.0199 (7)0.0145 (5)−0.0032 (6)0.0043 (5)0.0000 (5)
C70.0219 (8)0.0183 (9)0.0153 (7)−0.0007 (7)0.0010 (6)0.0010 (7)
C80.0225 (8)0.0226 (10)0.0199 (8)−0.0018 (8)0.0041 (7)0.0052 (8)
C90.0207 (8)0.0165 (9)0.0277 (9)−0.0007 (7)0.0043 (7)0.0054 (8)
C100.0218 (8)0.0168 (9)0.0266 (9)−0.0009 (7)0.0027 (7)−0.0033 (8)
C110.0214 (8)0.0171 (9)0.0190 (8)0.0013 (7)0.0033 (6)−0.0029 (7)
C120.0176 (7)0.0141 (8)0.0173 (7)0.0018 (6)0.0031 (6)0.0008 (6)
C130.0191 (8)0.0143 (8)0.0158 (7)0.0022 (7)0.0028 (6)0.0002 (6)

Geometric parameters (Å, °)

Br1—C41.887 (2)O1—H10.8200
N1—C11.349 (3)O2—C131.225 (2)
N1—C51.355 (3)C7—C81.394 (3)
N2—C11.339 (3)C7—C121.395 (2)
N2—H2A0.8600C7—H70.9300
N2—H2B0.8600C8—C91.380 (3)
C1—C21.417 (3)C8—H80.9300
C2—C31.377 (3)C9—C101.394 (3)
C2—H20.9300C9—H90.9300
C3—C41.404 (3)C10—C111.384 (3)
C3—H30.9300C10—H100.9300
C4—C51.378 (3)C11—C121.391 (3)
C5—H50.9300C11—H110.9300
O1—C131.317 (2)C12—C131.493 (3)
C1—N1—C5118.98 (18)C8—C7—H7120.3
C1—N2—H2A120.0C12—C7—H7120.3
C1—N2—H2B120.0C9—C8—C7120.53 (18)
H2A—N2—H2B120.0C9—C8—H8119.7
N2—C1—N1118.04 (19)C7—C8—H8119.7
N2—C1—C2120.74 (19)C8—C9—C10120.01 (19)
N1—C1—C2121.21 (19)C8—C9—H9120.0
C3—C2—C1119.56 (19)C10—C9—H9120.0
C3—C2—H2120.2C11—C10—C9119.9 (2)
C1—C2—H2120.2C11—C10—H10120.1
C2—C3—C4118.38 (19)C9—C10—H10120.1
C2—C3—H3120.8C10—C11—C12120.26 (18)
C4—C3—H3120.8C10—C11—H11119.9
C5—C4—C3119.6 (2)C12—C11—H11119.9
C5—C4—Br1120.26 (16)C11—C12—C7119.95 (18)
C3—C4—Br1120.10 (16)C11—C12—C13118.04 (16)
N1—C5—C4122.22 (19)C7—C12—C13121.98 (18)
N1—C5—H5118.9O2—C13—O1123.04 (18)
C4—C5—H5118.9O2—C13—C12120.31 (18)
C13—O1—H1109.5O1—C13—C12116.65 (16)
C8—C7—C12119.37 (19)
C5—N1—C1—N2177.14 (19)C7—C8—C9—C10−0.3 (3)
C5—N1—C1—C2−1.8 (3)C8—C9—C10—C11−0.1 (3)
N2—C1—C2—C3−177.5 (2)C9—C10—C11—C120.4 (3)
N1—C1—C2—C31.4 (3)C10—C11—C12—C7−0.3 (3)
C1—C2—C3—C40.1 (3)C10—C11—C12—C13−178.42 (19)
C2—C3—C4—C5−1.2 (3)C8—C7—C12—C110.0 (3)
C2—C3—C4—Br1178.02 (16)C8—C7—C12—C13177.99 (19)
C1—N1—C5—C40.6 (3)C11—C12—C13—O212.0 (3)
C3—C4—C5—N10.9 (3)C7—C12—C13—O2−166.00 (19)
Br1—C4—C5—N1−178.36 (15)C11—C12—C13—O1−168.26 (18)
C12—C7—C8—C90.3 (3)C7—C12—C13—O113.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.832.626 (2)162
N2—H2A···O2ii0.862.022.866 (3)167
N2—H2B···O1iii0.862.253.105 (2)171
C7—H7···O2iv0.932.513.064 (2)118

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2420).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr.216, 176–181.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vaday, S. & Foxman, M. B. (1999). Cryst. Eng.2, 145–151.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography