PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o616.
Published online 2010 February 13. doi:  10.1107/S1600536810005404
PMCID: PMC2983549

2-(2-Oxo-2-phenyl­ethyl)-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

Abstract

In the title compound, C15H11NO4S, the benzothia­zole unit is essentially planar [maximum deviation = 0.0644 (14) Å for the N atom] and forms a dihedral angle 54.43 (6)° with the phenyl ring. In the crystal structure, weak bifurcated C—H(...)O hydrogen bonds involving the carbonyl O atoms as acceptors result in R 2 2(7) ring motifs.

Related literature

For the use of 1,2-benzisothia­zoline-3-one 1,1-dioxide (saccharine) as an inter­mediate in the preparation of medicinally important mol­ecules, see: Siddiqui et al. (2006 [triangle]); Zia-ur-Rehman et al. (2005 [triangle], 2009 [triangle]). For the biological activity of saccharine, see: Singh et al. (2007 [triangle]); Vaccarino et al. (2007 [triangle]); Kapui et al. (2003 [triangle]). For related structures, see: Ahmad et al. (2008 [triangle], 2009 [triangle]). For hydrogen-bonding motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o616-scheme1.jpg

Experimental

Crystal data

  • C15H11NO4S
  • M r = 301.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o616-efi1.jpg
  • a = 8.0730 (2) Å
  • b = 9.1270 (3) Å
  • c = 18.0143 (6) Å
  • β = 95.4616 (18)°
  • V = 1321.31 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 K
  • 0.18 × 0.14 × 0.10 mm

Data collection

  • Nonius diffractometer with Bruker APEXII CCD
  • Absorption correction: multi-scan (SORTAV;Blessing, 1997 [triangle]) T min = 0.955, T max = 0.974
  • 15562 measured reflections
  • 3016 independent reflections
  • 2554 reflections with (I) > 2.0 σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.115
  • S = 1.09
  • 3016 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536810005404/lh2990sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005404/lh2990Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for financial support of this research.

supplementary crystallographic information

Comment

1,2-Benzisothiazoline-3-one 1,1-dioxide (saccharine) is an important starting material for the synthesis of different heterocyclic compounds and plays a role as an intermediate for the preparation of medicinally important molecules (Siddiqui et al., 2006; Zia-ur-Rehman et al., 2009). Various derivatives of saccharin are known to be cyclooxygenase-2 (COX-2) inhibitors (Singh et al., 2007), analgesic (Vaccarino et al., 2007), human leucocyte elastase (HLE) inhibitors (Kapui et al., 2003) etc. In continuation of our research on the synthesis of potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; Ahmad et al., 2009), we herein report the crystal structure of the title compound, N-phenacylsaccharin, (I).

The structure of (I) contains discrete molecules separated by normal van der Waals distances (Fig. 1). The benzothiazole moiety (S1/N1/C1—C7) is essentially planar (maximum deviation = 0.0644 (14) Å for N1-atom) and lies at an angle 54.43 (6) ° with respect to the phenyl ring (C10—C15). The structure is devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C—H···O are present in the crystal structure involving O1 and H-atoms bonded to C8 and C15 resulting in a seven membered ring in R22(7) motif (Bernstein et al., 1995) (Fig. 2 and Table 1).

Experimental

Phenacyl bromide (4.85 g, 0.024 mol) was slowly added to a suspension of sodium saccharine (5 g, 0.024 mol) in dimethylformamide (15 ml) and the mixture was stirred at 383 K for 3 hours under anhydrous conditions. On completion of reaction (as indicated by tlc), the mixture was poured on crushed ice and the precipitates formed were filtered and washed with excess of distilled water and cold ethanol respectively. The crystals of N-phenacylsaccharin suitable for XRD were grown from a solution of chloroform-methanol (3:1).

Refinement

All the H-atoms were located from the difference Fourier maps and were included in the refinements at geometrically idealized positions with C—H distances = 0.95 and 0.99 Å for aryl and methylene H-atoms, respectively, and Uiso = 1.2 times Ueq of the C-atoms to which they were bonded. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Unit cell packing of (I) showing non-classical hydrogen bonding interaction with dashed lines; H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C15H11NO4SF(000) = 624
Mr = 301.31Dx = 1.515 Mg m3
Monoclinic, P21/nMelting point: 458 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.0730 (2) ÅCell parameters from 3115 reflections
b = 9.1270 (3) Åθ = 1.0–27.5°
c = 18.0143 (6) ŵ = 0.26 mm1
β = 95.4616 (18)°T = 173 K
V = 1321.31 (7) Å3Block, white
Z = 40.18 × 0.14 × 0.10 mm

Data collection

Nonius APEX2 CCD diffractometer3016 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with (I) > 2.0 σ(I)
graphiteRint = 0.030
[var phi] & ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SORTAV;Blessing, 1997)h = −10→10
Tmin = 0.955, Tmax = 0.974k = −11→11
15562 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0412P)2 + 1.31P] where P = (Fo2 + 2Fc2)/3
3016 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.21297 (6)0.21225 (5)0.09588 (3)0.02212 (14)
O10.0329 (2)0.51326 (18)0.20418 (9)0.0369 (4)
O20.20831 (19)0.06413 (16)0.12149 (9)0.0303 (4)
O30.35091 (18)0.25411 (18)0.05634 (8)0.0306 (4)
O40.4233 (2)0.5471 (2)0.17286 (10)0.0480 (5)
N10.1956 (2)0.3264 (2)0.16706 (9)0.0256 (4)
C10.0221 (2)0.2691 (2)0.05015 (11)0.0220 (4)
C2−0.0584 (3)0.2109 (2)−0.01446 (11)0.0258 (4)
H2−0.01330.1309−0.03960.031*
C3−0.2090 (3)0.2757 (3)−0.04073 (12)0.0301 (5)
H3−0.26800.2395−0.08510.036*
C4−0.2743 (3)0.3918 (3)−0.00347 (12)0.0306 (5)
H4−0.37650.4347−0.02310.037*
C5−0.1931 (3)0.4467 (2)0.06218 (12)0.0292 (5)
H5−0.23940.52500.08820.035*
C6−0.0424 (2)0.3840 (2)0.08864 (11)0.0239 (4)
C70.0608 (3)0.4209 (2)0.15913 (11)0.0251 (4)
C80.3232 (3)0.3329 (2)0.22988 (11)0.0264 (4)
H8A0.38410.23870.23360.032*
H8B0.26900.34620.27650.032*
C90.4470 (3)0.4575 (2)0.22252 (11)0.0274 (4)
C100.5913 (2)0.4682 (2)0.28032 (11)0.0242 (4)
C110.6695 (3)0.6038 (2)0.29126 (13)0.0294 (5)
H110.63120.68560.26190.035*
C120.8030 (3)0.6194 (3)0.34485 (13)0.0333 (5)
H120.85510.71220.35260.040*
C130.8607 (3)0.5001 (3)0.38712 (12)0.0347 (5)
H130.95220.51140.42390.042*
C140.7858 (3)0.3650 (3)0.37606 (13)0.0354 (5)
H140.82710.28280.40450.042*
C150.6494 (3)0.3493 (3)0.32304 (12)0.0291 (5)
H150.59610.25690.31620.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0205 (2)0.0219 (3)0.0228 (2)0.00177 (18)−0.00385 (18)−0.00180 (19)
O10.0420 (9)0.0322 (9)0.0349 (9)0.0078 (7)−0.0040 (7)−0.0128 (7)
O20.0332 (8)0.0218 (8)0.0347 (8)0.0030 (6)−0.0036 (6)0.0007 (6)
O30.0222 (7)0.0374 (9)0.0320 (8)0.0010 (6)0.0007 (6)0.0023 (7)
O40.0550 (11)0.0412 (10)0.0430 (10)−0.0156 (9)−0.0195 (8)0.0180 (8)
N10.0260 (9)0.0255 (9)0.0235 (8)0.0023 (7)−0.0075 (7)−0.0049 (7)
C10.0206 (9)0.0222 (10)0.0227 (9)−0.0007 (8)−0.0009 (7)0.0020 (8)
C20.0265 (10)0.0274 (11)0.0228 (10)−0.0021 (8)−0.0019 (8)−0.0020 (8)
C30.0295 (11)0.0353 (12)0.0236 (10)−0.0031 (9)−0.0075 (8)0.0018 (9)
C40.0248 (10)0.0322 (12)0.0333 (11)0.0029 (9)−0.0054 (9)0.0044 (9)
C50.0282 (10)0.0253 (11)0.0335 (11)0.0052 (9)−0.0006 (9)0.0008 (9)
C60.0247 (10)0.0202 (10)0.0261 (10)−0.0009 (8)−0.0011 (8)0.0012 (8)
C70.0263 (10)0.0216 (10)0.0266 (10)−0.0013 (8)−0.0020 (8)−0.0004 (8)
C80.0281 (10)0.0274 (11)0.0219 (10)−0.0009 (8)−0.0071 (8)0.0000 (8)
C90.0295 (10)0.0271 (11)0.0242 (10)−0.0015 (9)−0.0039 (8)0.0003 (8)
C100.0232 (9)0.0282 (11)0.0209 (9)−0.0019 (8)0.0002 (7)−0.0039 (8)
C110.0261 (10)0.0275 (11)0.0344 (12)−0.0016 (9)0.0016 (9)−0.0025 (9)
C120.0274 (11)0.0335 (12)0.0390 (13)−0.0090 (9)0.0031 (9)−0.0088 (10)
C130.0260 (11)0.0488 (15)0.0282 (11)−0.0086 (10)−0.0031 (9)−0.0044 (10)
C140.0320 (12)0.0400 (13)0.0321 (12)−0.0056 (10)−0.0079 (9)0.0073 (10)
C150.0303 (11)0.0304 (11)0.0251 (10)−0.0070 (9)−0.0050 (8)0.0013 (9)

Geometric parameters (Å, °)

S1—O31.4298 (15)C5—H50.9500
S1—O21.4301 (15)C6—C71.489 (3)
S1—N11.6685 (18)C8—C91.528 (3)
S1—C11.755 (2)C8—H8A0.9900
O1—C71.206 (3)C8—H8B0.9900
O4—C91.213 (3)C9—C101.490 (3)
N1—C71.385 (3)C10—C151.386 (3)
N1—C81.457 (2)C10—C111.395 (3)
C1—C21.384 (3)C11—C121.384 (3)
C1—C61.386 (3)C11—H110.9500
C2—C31.394 (3)C12—C131.383 (3)
C2—H20.9500C12—H120.9500
C3—C41.386 (3)C13—C141.380 (3)
C3—H30.9500C13—H130.9500
C4—C51.390 (3)C14—C151.395 (3)
C4—H40.9500C14—H140.9500
C5—C61.387 (3)C15—H150.9500
O3—S1—O2117.32 (10)N1—C7—C6108.51 (17)
O3—S1—N1110.03 (9)N1—C8—C9112.50 (17)
O2—S1—N1109.61 (9)N1—C8—H8A109.1
O3—S1—C1112.19 (9)C9—C8—H8A109.1
O2—S1—C1112.48 (9)N1—C8—H8B109.1
N1—S1—C192.39 (9)C9—C8—H8B109.1
C7—N1—C8123.03 (17)H8A—C8—H8B107.8
C7—N1—S1115.60 (14)O4—C9—C10122.0 (2)
C8—N1—S1121.16 (14)O4—C9—C8120.45 (19)
C2—C1—C6122.85 (19)C10—C9—C8117.53 (17)
C2—C1—S1127.02 (16)C15—C10—C11119.42 (19)
C6—C1—S1110.12 (14)C15—C10—C9122.54 (19)
C1—C2—C3116.6 (2)C11—C10—C9118.04 (19)
C1—C2—H2121.7C12—C11—C10120.1 (2)
C3—C2—H2121.7C12—C11—H11119.9
C4—C3—C2121.4 (2)C10—C11—H11119.9
C4—C3—H3119.3C13—C12—C11120.1 (2)
C2—C3—H3119.3C13—C12—H12119.9
C3—C4—C5121.1 (2)C11—C12—H12119.9
C3—C4—H4119.4C14—C13—C12120.3 (2)
C5—C4—H4119.4C14—C13—H13119.9
C6—C5—C4118.1 (2)C12—C13—H13119.9
C6—C5—H5120.9C13—C14—C15119.8 (2)
C4—C5—H5120.9C13—C14—H14120.1
C1—C6—C5119.97 (19)C15—C14—H14120.1
C1—C6—C7113.03 (17)C10—C15—C14120.2 (2)
C5—C6—C7126.91 (19)C10—C15—H15119.9
O1—C7—N1124.10 (19)C14—C15—H15119.9
O1—C7—C6127.35 (19)
O3—S1—N1—C7109.01 (16)S1—N1—C7—O1−177.54 (18)
O2—S1—N1—C7−120.57 (16)C8—N1—C7—C6179.40 (18)
C1—S1—N1—C7−5.67 (17)S1—N1—C7—C64.5 (2)
O3—S1—N1—C8−65.95 (18)C1—C6—C7—O1−178.4 (2)
O2—S1—N1—C864.47 (18)C5—C6—C7—O1−1.8 (4)
C1—S1—N1—C8179.38 (17)C1—C6—C7—N1−0.5 (2)
O3—S1—C1—C272.9 (2)C5—C6—C7—N1176.0 (2)
O2—S1—C1—C2−62.0 (2)C7—N1—C8—C9−77.6 (3)
N1—S1—C1—C2−174.4 (2)S1—N1—C8—C997.0 (2)
O3—S1—C1—C6−107.75 (16)N1—C8—C9—O47.7 (3)
O2—S1—C1—C6117.42 (15)N1—C8—C9—C10−175.22 (18)
N1—S1—C1—C65.03 (16)O4—C9—C10—C15−160.3 (2)
C6—C1—C2—C31.2 (3)C8—C9—C10—C1522.7 (3)
S1—C1—C2—C3−179.45 (16)O4—C9—C10—C1119.8 (3)
C1—C2—C3—C4−0.4 (3)C8—C9—C10—C11−157.27 (19)
C2—C3—C4—C5−0.9 (3)C15—C10—C11—C12−0.6 (3)
C3—C4—C5—C61.4 (3)C9—C10—C11—C12179.3 (2)
C2—C1—C6—C5−0.8 (3)C10—C11—C12—C130.8 (3)
S1—C1—C6—C5179.80 (16)C11—C12—C13—C140.1 (4)
C2—C1—C6—C7176.07 (19)C12—C13—C14—C15−1.3 (4)
S1—C1—C6—C7−3.4 (2)C11—C10—C15—C14−0.5 (3)
C4—C5—C6—C1−0.6 (3)C9—C10—C15—C14179.5 (2)
C4—C5—C6—C7−176.9 (2)C13—C14—C15—C101.5 (4)
C8—N1—C7—O1−2.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.413.318 (3)153
C15—H15···O1i0.952.473.417 (3)178

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2990).

References

  • Ahmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185. [PMC free article] [PubMed]
  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  • Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther.305, 451–459. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.
  • Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem.42, 456–462. [PubMed]
  • Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem.15, 2206–2215. [PubMed]
  • Zia-ur-Rehman, M. Z., Choudary, J. A. amp; Ahmad, S. (2005). Bull. Korean Chem. Soc 26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography