PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o595–o596.
Published online 2010 February 13. doi:  10.1107/S1600536810004782
PMCID: PMC2983547

Anilinium hydrogen sulfate

Abstract

The asymmetric unit of the title compound, C6H8N+·HSO4 , contains two cations and two anions which are linked to each other through N—H(...)O hydrogen bonds, formed by all H atoms covalently bonded to the N atoms. In addition, strong O—H(...)O anion–anion hydrogen-bond inter­actions are also observed.

Related literature

For hydrogen bonding, see: Zimmerman & Corbin (2000 [triangle]); Brunsveld et al. (2001 [triangle]); Desiraju (2002 [triangle]); Desiraju & Steiner (1999 [triangle]); Steiner (2002 [triangle]); Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]). For related structures, see: Benali-Cherif, Boussekine et al. (2009 [triangle]); Messai et al. (2009 [triangle]); Benali-Cherif, Falek et al. (2009 [triangle]); Rademeyer (2004 [triangle]); Jayaraman et al. (2002 [triangle]); Smith et al. (2004 [triangle]); Paixão et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o595-scheme1.jpg

Experimental

Crystal data

  • C6H8N+·HSO4
  • M r = 191.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o595-efi5.jpg
  • a = 14.3201 (2) Å
  • b = 9.0891 (3) Å
  • c = 12.8771 (2) Å
  • V = 1676.04 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 K
  • 0.2 × 0.15 × 0.1 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 16963 measured reflections
  • 4641 independent reflections
  • 3108 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.117
  • S = 1.02
  • 4641 reflections
  • 219 parameters
  • 1 restraint
  • H-atom parameters not refined
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2096 Friedel pairs
  • Flack parameter: 0.08 (9)

Data collection: KappaCCD Server Software (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-32 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810004782/dn2534sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004782/dn2534Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and the Centre Universitaire de Khenchela for financial support.

supplementary crystallographic information

Comment

The main purpose of this structural study was a determination of the arrangement of the cations and anions which are held together by two-dimensional hydrogen-bond networks.

Hydrogen bonding is one of the most versatile noncovalent forces in supramolecular chemistry and crystal engineering (Zimmerman & Corbin, 2000; Brunsveld et al., 2001; Desiraju, 2002). Therefore, in the past decades assessment of discrete hydrogen bonding patterns had received great attention (Steiner, 2002; Desiraju & Steiner, 1999) because of its widespread occurrence in biological systems.

The aim of this paper is to discuss hydrogen patterns assuring the connection between anilinium and hydrogensulfate entities and to establish their different graph-set motifs (Bernstein et al., 1995).

Bis(anilinium hydrogensulfate) is one of the hybrid compounds, rich in H-bonds (Benali-Cherif, Boussekine, et al., 2009; Messai et al., 2009; Benali-Cherif, Falek, et al., 2009), which could have potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to the strength and the directionality of hydrogen bonds (Steiner et al. 2002, Jayaraman et al., 2002).

Recently, similar structures containing anilinium cations have been reported. Among examples, can be named the folowing ones: anilinium nitrate (Rademeyer, 2004), anilinium picrate (Smith et al., 2004), anilinium hydrogenphosphite and anilinium hydrogenoxalate hemihydrate(Paixão et al., 2000).

The structure of (I) may be described as formed by alternating sheets of cations and anions (Fig. 2) which are held together with four and five-centered N—H···O H-bonds to form C44(10) infinite chains running through the c direction. Moreover, strong O—H···O hydrogen bonds observed between bisulfate anions generate C22(8) chains in the a axis direction. The infinite chains resulting from anion-anion and anion-cation interactions can be described as zigzag layers parallel to the (ac) plane (Fig. 3). The crossing of these chains builds up different rings with R33(10) and R54(16) graph set motifs (Fig. 3) (Etter et al., 1990; Bernstein et al., 1995).

Experimental

Single crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of aniline and sulfuric acid.

Refinement

The title compound crystallizes in the centrosymmetric space group P c a 21. All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were located from Fourier difference maps and treated as riding with C—H = 0.93 Å, N—H = 0.89 Å and O—H = 0.82 Å. Their isotropic displacement parameters were set equal to 1.2Ueq (C) and 1.5Ueq (N, O).

Figures

Fig. 1.
ORTEP view of the asymmetric unit of (I) showing 10% probability displacement ellipsoids.
Fig. 2.
Alternating cationic and anionc layers visualized through the (001) plane.
Fig. 3.
Intermolecular hydrogen bonding patterns running parallel to (bc) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+1, z; (ii) -x+1, -y+1, z+1/2; (iii) -x+1/2, y, z+1/2.

Crystal data

C6H8N+·HSO4F(000) = 800
Mr = 191.20Dx = 1.516 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 16963 reflections
a = 14.3201 (2) Åθ = 2.7–30.0°
b = 9.0891 (3) ŵ = 0.36 mm1
c = 12.8771 (2) ÅT = 293 K
V = 1676.04 (7) Å3Prism, colourless
Z = 80.2 × 0.15 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer3108 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
graphiteθmax = 30.0°, θmin = 2.7°
ω – θ scansh = −19→17
16963 measured reflectionsk = −9→12
4641 independent reflectionsl = −18→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters not refined
wR(F2) = 0.117w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1354P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4641 reflectionsΔρmax = 0.35 e Å3
219 parametersΔρmin = −0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.08 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.21732 (15)0.3085 (2)0.3390 (2)0.0432 (5)
H220.23920.35250.28230.065*
H330.25500.32730.39240.065*
H110.16030.34220.35300.065*
C1A0.21307 (19)0.1496 (3)0.3217 (3)0.0363 (7)
C2A0.1721 (3)0.0988 (4)0.2311 (3)0.0531 (8)
H2A0.14820.16410.18230.064*
C3A0.1676 (3)−0.0512 (4)0.2153 (3)0.0626 (10)
H3A0.1398−0.08750.15530.075*
C4A0.2039 (2)−0.1480 (4)0.2873 (4)0.0640 (11)
H4A0.2006−0.24890.27600.077*
C5A0.2449 (3)−0.0940 (4)0.3758 (3)0.0555 (9)
H5A0.2698−0.15880.42430.067*
C6A0.2493 (3)0.0551 (4)0.3931 (3)0.0458 (7)
H6A0.27700.09120.45330.055*
N1B0.52868 (13)0.2975 (2)0.5035 (2)0.0403 (5)
H10.58610.33420.49890.061*
H20.49890.33970.55640.061*
H30.49780.31540.44480.061*
C1B0.53385 (18)0.1390 (3)0.5207 (2)0.0330 (6)
C2B0.5767 (2)0.0855 (4)0.6081 (3)0.0498 (8)
H2B0.60150.14930.65730.060*
C3B0.5824 (3)−0.0655 (4)0.6217 (4)0.0622 (10)
H3B0.6104−0.10370.68100.075*
C4B0.5467 (3)−0.1590 (4)0.5479 (4)0.0622 (11)
H4B0.5521−0.26020.55680.075*
C5B0.5030 (3)−0.1046 (4)0.4610 (4)0.0599 (11)
H5B0.4775−0.16850.41220.072*
C6B0.4973 (3)0.0456 (4)0.4468 (3)0.0453 (7)
H6B0.46880.08360.38770.054*
S1A0.47642 (6)0.50293 (6)0.27815 (5)0.0354 (3)
O1A0.53917 (14)0.5609 (3)0.3548 (2)0.0588 (5)
O2A0.43955 (15)0.3610 (2)0.30490 (17)0.0501 (5)
O3A0.5129 (3)0.5072 (3)0.1721 (3)0.0610 (11)
O4A0.39386 (13)0.6139 (2)0.27837 (19)0.0492 (5)
H40.34950.57840.24680.074*
S1B0.22562 (6)0.50860 (7)0.06533 (5)0.0340 (3)
O1B0.29288 (13)0.5696 (2)−0.00469 (18)0.0543 (5)
O2B0.18378 (13)0.3739 (2)0.02858 (18)0.0477 (5)
O3B0.2609 (3)0.4930 (2)0.1701 (3)0.0570 (10)
O4B0.14771 (13)0.6268 (2)0.0699 (2)0.0493 (5)
H440.10670.60000.11000.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0488 (13)0.0354 (12)0.0452 (12)0.0039 (9)−0.0019 (9)−0.0050 (10)
C1A0.0319 (14)0.0339 (15)0.0431 (16)0.0026 (11)0.0016 (12)−0.0062 (12)
C2A0.0594 (19)0.0502 (19)0.0496 (18)0.0050 (16)−0.0107 (17)−0.0079 (17)
C3A0.069 (2)0.055 (2)0.063 (3)−0.001 (2)−0.0126 (19)−0.023 (2)
C4A0.0542 (19)0.0386 (19)0.099 (3)−0.0010 (14)0.007 (2)−0.022 (2)
C5A0.0558 (18)0.0426 (17)0.068 (3)0.0087 (16)−0.0002 (19)0.0097 (17)
C6A0.0451 (15)0.045 (2)0.0471 (18)−0.0003 (18)−0.0043 (14)−0.0026 (16)
N1B0.0429 (11)0.0348 (12)0.0433 (11)−0.0024 (9)0.0007 (9)−0.0008 (10)
C1B0.0320 (14)0.0303 (14)0.0366 (15)−0.0033 (10)0.0044 (11)0.0006 (11)
C2B0.0532 (18)0.0478 (18)0.0483 (17)0.0025 (15)−0.0088 (16)0.0018 (15)
C3B0.062 (2)0.058 (3)0.067 (2)0.008 (2)0.003 (2)0.024 (2)
C4B0.0561 (19)0.0345 (18)0.096 (3)−0.0007 (15)0.021 (2)0.0099 (19)
C5B0.0511 (18)0.045 (2)0.084 (3)−0.0072 (17)0.004 (2)−0.0201 (19)
C6B0.0410 (15)0.0461 (19)0.0487 (19)−0.0017 (18)−0.0040 (14)−0.0100 (17)
S1A0.0319 (6)0.0352 (5)0.0392 (6)−0.0012 (2)−0.0005 (5)0.0038 (2)
O1A0.0503 (12)0.0554 (14)0.0705 (14)−0.0116 (11)−0.0226 (10)0.0051 (12)
O2A0.0625 (13)0.0365 (11)0.0514 (12)−0.0065 (10)−0.0036 (10)0.0067 (8)
O3A0.058 (2)0.075 (2)0.050 (2)0.0183 (11)0.0188 (19)0.0205 (10)
O4A0.0391 (10)0.0430 (11)0.0655 (13)0.0065 (8)−0.0047 (9)−0.0081 (10)
S1B0.0305 (6)0.0341 (5)0.0374 (5)−0.0020 (2)0.0013 (4)−0.0020 (3)
O1B0.0427 (11)0.0621 (16)0.0580 (13)−0.0112 (10)0.0141 (9)0.0022 (12)
O2B0.0499 (11)0.0368 (10)0.0564 (12)−0.0074 (9)0.0048 (9)−0.0099 (9)
O3B0.0476 (18)0.073 (2)0.050 (2)−0.0086 (10)−0.0119 (18)0.0084 (10)
O4B0.0470 (11)0.0379 (11)0.0630 (12)0.0054 (9)0.0082 (10)0.0013 (10)

Geometric parameters (Å, °)

N1A—C1A1.462 (4)C1B—C6B1.378 (4)
N1A—H220.8900C2B—C3B1.386 (6)
N1A—H330.8900C2B—H2B0.9300
N1A—H110.8900C3B—C4B1.373 (6)
C1A—C6A1.361 (5)C3B—H3B0.9300
C1A—C2A1.385 (5)C4B—C5B1.374 (6)
C2A—C3A1.380 (5)C4B—H4B0.9300
C2A—H2A0.9300C5B—C6B1.380 (4)
C3A—C4A1.380 (6)C5B—H5B0.9300
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.372 (6)S1A—O1A1.435 (2)
C4A—H4A0.9300S1A—O2A1.436 (2)
C5A—C6A1.375 (4)S1A—O3A1.463 (4)
C5A—H5A0.9300S1A—O4A1.554 (2)
C6A—H6A0.9300O4A—H40.8201
N1B—C1B1.460 (3)S1B—O1B1.431 (2)
N1B—H10.8900S1B—O2B1.4430 (19)
N1B—H20.8900S1B—O3B1.448 (4)
N1B—H30.8900S1B—O4B1.550 (2)
C1B—C2B1.371 (4)O4B—H440.8200
C1A—N1A—H22109.5C2B—C1B—N1B119.8 (3)
C1A—N1A—H33109.5C6B—C1B—N1B119.0 (3)
H22—N1A—H33109.5C1B—C2B—C3B118.8 (3)
C1A—N1A—H11109.5C1B—C2B—H2B120.6
H22—N1A—H11109.5C3B—C2B—H2B120.6
H33—N1A—H11109.5C4B—C3B—C2B120.2 (3)
C6A—C1A—C2A121.4 (3)C4B—C3B—H3B119.9
C6A—C1A—N1A120.3 (3)C2B—C3B—H3B119.9
C2A—C1A—N1A118.4 (3)C3B—C4B—C5B120.7 (4)
C3A—C2A—C1A118.2 (3)C3B—C4B—H4B119.7
C3A—C2A—H2A120.9C5B—C4B—H4B119.7
C1A—C2A—H2A120.9C4B—C5B—C6B119.4 (3)
C2A—C3A—C4A120.9 (3)C4B—C5B—H5B120.3
C2A—C3A—H3A119.6C6B—C5B—H5B120.3
C4A—C3A—H3A119.6C1B—C6B—C5B119.7 (3)
C5A—C4A—C3A119.4 (3)C1B—C6B—H6B120.2
C5A—C4A—H4A120.3C5B—C6B—H6B120.2
C3A—C4A—H4A120.3O1A—S1A—O2A113.28 (16)
C4A—C5A—C6A120.5 (3)O1A—S1A—O3A114.1 (2)
C4A—C5A—H5A119.8O2A—S1A—O3A112.27 (15)
C6A—C5A—H5A119.8O1A—S1A—O4A103.72 (14)
C1A—C6A—C5A119.6 (3)O2A—S1A—O4A107.62 (12)
C1A—C6A—H6A120.2O3A—S1A—O4A104.85 (16)
C5A—C6A—H6A120.2S1A—O4A—H4109.5
C1B—N1B—H1109.5O1B—S1B—O2B113.68 (16)
C1B—N1B—H2109.5O1B—S1B—O3B113.0 (2)
H1—N1B—H2109.5O2B—S1B—O3B111.55 (14)
C1B—N1B—H3109.5O1B—S1B—O4B103.86 (13)
H1—N1B—H3109.5O2B—S1B—O4B107.56 (12)
H2—N1B—H3109.5O3B—S1B—O4B106.47 (17)
C2B—C1B—C6B121.2 (3)S1B—O4B—H44109.5
C6A—C1A—C2A—C3A0.9 (5)C6B—C1B—C2B—C3B−0.4 (4)
N1A—C1A—C2A—C3A−179.6 (3)N1B—C1B—C2B—C3B−178.8 (3)
C1A—C2A—C3A—C4A−0.7 (5)C1B—C2B—C3B—C4B0.9 (4)
C2A—C3A—C4A—C5A0.0 (6)C2B—C3B—C4B—C5B−1.6 (5)
C3A—C4A—C5A—C6A0.4 (6)C3B—C4B—C5B—C6B1.7 (6)
C2A—C1A—C6A—C5A−0.4 (5)C2B—C1B—C6B—C5B0.5 (5)
N1A—C1A—C6A—C5A−180.0 (3)N1B—C1B—C6B—C5B178.9 (3)
C4A—C5A—C6A—C1A−0.2 (5)C4B—C5B—C6B—C1B−1.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H11···O1Ai0.891.952.821 (2)167
N1B—H2···O3Aii0.892.052.867 (3)153
N1A—H33···O2Biii0.892.012.884 (3)169
N1B—H3···O1A0.892.583.069 (3)115
N1B—H3···O2A0.892.032.916 (3)175
N1A—H22···O3B0.891.952.817 (4)163
O4A—H4···O3B0.821.792.603 (4)175
O4B—H44···O3Ai0.821.842.635 (4)163
N1B—H1···O1Bii0.891.942.828 (3)175

Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1, −y+1, z+1/2; (iii) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2534).

References

  • Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744. [PMC free article] [PubMed]
  • Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058–o3059. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev.101, 4071–4097. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Desiraju, G. R. (2002). Acc. Chem. Res.35, 565–573. [PubMed]
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p 507. New York: Oxford University Press.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci.4, 413–422.
  • Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460. [PMC free article] [PubMed]
  • Nonius (1998). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Paixão, J. A., Matos Beja, A., Ramos Silva, M. & Martin-Gil, J. (2000). Acta Cryst. C56, 1132–1135. [PubMed]
  • Rademeyer, M. (2004). Acta Cryst. E60, o958–o960.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]
  • Zimmerman, S. C. & Corbin, P. S. (2000). Struct. Bond.96, 63–94.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography