PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m287.
Published online 2010 February 13. doi:  10.1107/S1600536810005052
PMCID: PMC2983544

catena-Poly[[[aqua­silver(I)]-μ-4,4′-bipyridine-κ2 N:N′] 4-amino­benzoate nitrate hydrate]

Abstract

In the structure of the title compound, 2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2O, the AgI atom is three-coordinated in a T-shaped configuration by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) ligands at short distances and by one water O atom at a longer distance. Each bipy ligand bridges two neighbouring AgI atoms, forming a chain structure extending parallel to [101]. The complete 4-amino­benzoate anion, the nitrate anion and the uncoordinated water mol­ecule are located on mirror planes: together with the coordinated water mol­ecule, they form N—H(...)O, O—H(...)O and O—H(...)N hydrogen bonds, stabilizing the crystal structure.

Related literature

For a related structure, see: Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m287-scheme1.jpg

Experimental

Crystal data

  • 2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2O
  • M r = 780.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m287-efi1.jpg
  • a = 8.2595 (4) Å
  • b = 17.3531 (8) Å
  • c = 9.9267 (4) Å
  • β = 103.231 (1)°
  • V = 1385.01 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 293 K
  • 0.24 × 0.21 × 0.17 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.54, T max = 0.83
  • 7782 measured reflections
  • 2847 independent reflections
  • 2390 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.059
  • S = 1.07
  • 2847 reflections
  • 230 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005052/wm2305sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005052/wm2305Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Anshan Normal University for support.

supplementary crystallographic information

Comment

Silver coordination polymers have received intense interests because of their interesting structural features and potential applications (Zhang et al., 2008). We report here the synthesis and structure of the title compound, [Ag2(C10H8N2)2(H2O)2].(C7H6NO2).NO3.H2O, (I).

In the crystal structure of compound (I), the AgI atom is three-coordinated by two nitrogen atoms from two symmetry-related bipy (bipy = 4,4'-bipyridine) ligands and one water water molecule in a T-shaped coordination configuration (Fig. 1). Each bipy ligand bridges two neighboring AgI atoms to form a chain structure along [101]. Further, L anions (L = 4-aminobenzoate), the nitrate anion, and the uncoordinated water molecule form N—H···O and O—H···O hydrogen bonds, stabilizing the structure of (I).

Experimental

A mixture of AgNO3 (1 mmol), NaOH (0.040 g, 1 mmol) and 4-aminobenzoic acid (1 mmol) in water (15 ml) was stirred for 10 min at room temperature. Then 4,4'-bipyridine (1 mmol) was added to the solution with stirring for 30 min and a white precipitate was obtained. The precipitate was dissolved by dropwise addition of ammonia (5 M). Single crystals were obtained by slow evaporation of the solution at room temperature.

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The amino and water H atoms were located in a difference Fourier map, and were refined with a distance restraints of N—H = O—H = 0.85 Å.

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x-1, y, z-1; (ii) x, 1.5-y, z]

Crystal data

2[Ag(C10H8N2)(H2O)](C7H6NO2)(NO3)·H2OF(000) = 780
Mr = 780.29Dx = 1.871 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2847 reflections
a = 8.2595 (4) Åθ = 2.1–26.1°
b = 17.3531 (8) ŵ = 1.48 mm1
c = 9.9267 (4) ÅT = 293 K
β = 103.231 (1)°Block, colourless
V = 1385.01 (11) Å30.24 × 0.21 × 0.17 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer2847 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→7
Tmin = 0.54, Tmax = 0.83k = −21→17
7782 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0284P)2 + 0.2523P] where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max = 0.003
230 parametersΔρmax = 0.34 e Å3
8 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9046 (4)0.75000.9999 (4)0.0234 (8)
C20.7795 (4)0.75001.0736 (4)0.0216 (7)
H20.80820.75001.16980.026*
C30.6139 (4)0.75001.0056 (4)0.0201 (7)
H30.53310.75001.05730.024*
C40.5645 (4)0.75000.8621 (3)0.0198 (7)
C50.6902 (4)0.75000.7886 (4)0.0215 (7)
H50.66100.75000.69240.026*
C60.8556 (4)0.75000.8547 (4)0.0240 (8)
H60.93610.75000.80270.029*
C70.3820 (4)0.75000.7909 (3)0.0198 (7)
C80.6051 (3)0.95341 (14)0.7979 (2)0.0211 (5)
H80.59070.90990.74170.025*
C90.7206 (3)0.95076 (14)0.9219 (2)0.0203 (5)
H90.78220.90610.94770.024*
C100.7458 (3)1.01485 (13)1.0091 (2)0.0156 (5)
C110.6492 (3)1.07948 (14)0.9627 (2)0.0204 (5)
H110.66111.12381.01660.025*
C120.5365 (3)1.07780 (14)0.8371 (2)0.0219 (5)
H120.47391.12180.80820.026*
C131.0736 (3)0.94885 (15)1.3175 (2)0.0235 (5)
H131.12640.90311.35120.028*
C140.9522 (3)0.94648 (14)1.1975 (2)0.0238 (5)
H140.92410.89981.15230.029*
C150.8700 (3)1.01438 (13)1.1424 (2)0.0172 (5)
C160.9155 (3)1.08119 (14)1.2193 (2)0.0210 (5)
H160.86271.12761.18970.025*
C171.0384 (3)1.07876 (14)1.3392 (2)0.0231 (5)
H171.06641.12431.38830.028*
N11.0689 (4)0.75001.0676 (4)0.0366 (8)
N20.5122 (2)1.01603 (11)0.7543 (2)0.0180 (4)
N31.1201 (2)1.01423 (11)1.3889 (2)0.0206 (4)
N40.6731 (4)0.75000.3860 (3)0.0293 (7)
O10.3438 (3)0.75000.6599 (3)0.0305 (6)
O20.2780 (3)0.75000.8655 (2)0.0234 (5)
O1W0.4203 (2)0.62838 (10)0.50869 (19)0.0327 (4)
O2W0.0951 (4)0.75000.3901 (3)0.0499 (8)
O40.5190 (3)0.75000.3396 (3)0.0365 (7)
O50.7501 (3)0.68814 (12)0.4064 (2)0.0511 (6)
Ag10.32721 (2)1.014048 (12)0.563502 (18)0.02456 (8)
H1A1.099 (5)0.75001.155 (2)0.046 (14)*
H1B1.143 (4)0.75001.021 (4)0.044 (13)*
HW110.400 (4)0.6633 (16)0.562 (3)0.065*
HW120.448 (4)0.6508 (18)0.443 (2)0.065*
HW210.154 (4)0.75000.472 (3)0.065*
HW22−0.004 (3)0.75000.404 (4)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0206 (18)0.0152 (18)0.035 (2)0.0000.0080 (15)0.000
C20.0238 (18)0.0190 (18)0.0225 (18)0.0000.0064 (14)0.000
C30.0230 (18)0.0137 (17)0.0254 (18)0.0000.0093 (14)0.000
C40.0234 (18)0.0109 (17)0.0267 (19)0.0000.0089 (15)0.000
C50.032 (2)0.0118 (17)0.0234 (18)0.0000.0116 (15)0.000
C60.0270 (19)0.0154 (18)0.034 (2)0.0000.0171 (16)0.000
C70.0244 (18)0.0092 (16)0.0246 (19)0.0000.0033 (15)0.000
C80.0243 (13)0.0189 (13)0.0175 (12)0.0005 (10)−0.0003 (10)−0.0022 (10)
C90.0244 (13)0.0145 (12)0.0187 (12)0.0019 (10)−0.0022 (10)0.0011 (10)
C100.0140 (11)0.0174 (12)0.0146 (11)−0.0019 (9)0.0012 (9)0.0016 (9)
C110.0233 (13)0.0156 (12)0.0194 (12)0.0004 (9)−0.0013 (10)−0.0031 (9)
C120.0222 (12)0.0192 (13)0.0208 (12)0.0054 (10)−0.0027 (10)0.0010 (10)
C130.0256 (13)0.0180 (13)0.0228 (13)0.0017 (10)−0.0030 (10)0.0021 (10)
C140.0274 (13)0.0177 (13)0.0211 (12)0.0012 (10)−0.0051 (10)−0.0023 (10)
C150.0140 (11)0.0198 (12)0.0166 (12)−0.0008 (9)0.0007 (9)0.0013 (9)
C160.0205 (12)0.0180 (13)0.0207 (12)0.0017 (10)−0.0034 (10)−0.0013 (10)
C170.0256 (13)0.0179 (13)0.0217 (13)−0.0005 (10)−0.0031 (10)−0.0025 (10)
N10.0192 (17)0.051 (2)0.039 (2)0.0000.0064 (17)0.000
N20.0179 (10)0.0195 (10)0.0145 (10)−0.0001 (8)−0.0007 (8)0.0017 (8)
N30.0199 (10)0.0223 (11)0.0161 (10)−0.0004 (9)−0.0029 (8)−0.0005 (8)
N40.0349 (19)0.035 (2)0.0175 (15)0.0000.0045 (14)0.000
O10.0278 (14)0.0388 (16)0.0232 (14)0.0000.0024 (11)0.000
O20.0211 (13)0.0210 (13)0.0287 (14)0.0000.0071 (11)0.000
O1W0.0407 (12)0.0278 (11)0.0273 (11)−0.0025 (9)0.0030 (9)0.0029 (8)
O2W0.0302 (16)0.062 (2)0.051 (2)0.000−0.0047 (14)0.000
O40.0275 (15)0.0436 (17)0.0352 (16)0.0000.0005 (12)0.000
O50.0491 (13)0.0414 (14)0.0585 (14)0.0149 (11)0.0034 (11)0.0173 (11)
Ag10.02136 (12)0.03052 (13)0.01619 (11)0.00025 (8)−0.00732 (8)−0.00028 (8)

Geometric parameters (Å, °)

Ag1—N3i2.139 (2)C17—H170.9300
Ag1—N22.1444 (19)O1—C71.266 (4)
Ag1—O1Wii2.6799 (17)O2—C71.255 (4)
N2—C121.337 (3)N1—C11.369 (4)
N2—C81.344 (3)N1—H1A0.85 (4)
N3—C171.342 (3)N1—H1B0.85 (4)
N3—C131.346 (3)C1—C21.396 (5)
N3—Ag1iii2.139 (2)C1—C61.405 (5)
C8—C91.374 (3)C2—C31.380 (4)
C8—H80.9300C2—H20.9300
C9—C101.396 (3)C3—C41.389 (5)
C9—H90.9300C3—H30.9300
C10—C111.392 (3)C4—C51.399 (4)
C10—C151.477 (3)C4—C71.511 (4)
C11—C121.375 (3)C5—C61.373 (5)
C11—H110.9300C5—H50.9300
C12—H120.9300C6—H60.9300
C13—C141.371 (3)O4—N41.251 (4)
C13—H130.9300O5—N41.240 (2)
C14—C151.407 (3)N4—O5ii1.240 (2)
C14—H140.9300O1W—HW110.85 (2)
C15—C161.392 (3)O1W—HW120.85 (2)
C16—C171.377 (3)O2W—HW210.85 (2)
C16—H160.9300O2W—HW220.85 (2)
N3i—Ag1—N2172.70 (7)C17—C16—H16120.0
N3i—Ag1—O1Wii92.88 (6)C15—C16—H16120.0
N2—Ag1—O1Wii90.84 (6)N3—C17—C16123.6 (2)
C12—N2—C8117.1 (2)N3—C17—H17118.2
C12—N2—Ag1122.13 (15)C16—C17—H17118.2
C8—N2—Ag1120.71 (16)C1—N1—H1A122 (3)
C17—N3—C13116.8 (2)C1—N1—H1B119 (3)
C17—N3—Ag1iii122.74 (16)H1A—N1—H1B119 (3)
C13—N3—Ag1iii120.27 (16)N1—C1—C2120.8 (3)
N2—C8—C9122.9 (2)N1—C1—C6121.6 (3)
N2—C8—H8118.5C2—C1—C6117.6 (3)
C9—C8—H8118.5C3—C2—C1120.9 (3)
C8—C9—C10120.2 (2)C3—C2—H2119.5
C8—C9—H9119.9C1—C2—H2119.5
C10—C9—H9119.9C2—C3—C4121.8 (3)
C11—C10—C9116.4 (2)C2—C3—H3119.1
C11—C10—C15121.9 (2)C4—C3—H3119.1
C9—C10—C15121.7 (2)C3—C4—C5117.1 (3)
C12—C11—C10120.1 (2)C3—C4—C7120.4 (3)
C12—C11—H11120.0C5—C4—C7122.5 (3)
C10—C11—H11120.0C6—C5—C4121.8 (3)
N2—C12—C11123.3 (2)C6—C5—H5119.1
N2—C12—H12118.3C4—C5—H5119.1
C11—C12—H12118.3C5—C6—C1120.8 (3)
N3—C13—C14123.1 (2)C5—C6—H6119.6
N3—C13—H13118.4C1—C6—H6119.6
C14—C13—H13118.4O2—C7—O1124.2 (3)
C13—C14—C15120.3 (2)O2—C7—C4117.9 (3)
C13—C14—H14119.8O1—C7—C4117.9 (3)
C15—C14—H14119.8O5—N4—O5ii119.9 (3)
C16—C15—C14116.1 (2)O5—N4—O4120.02 (16)
C16—C15—C10122.1 (2)O5ii—N4—O4120.02 (16)
C14—C15—C10121.8 (2)HW11—O1W—HW12107 (3)
C17—C16—C15120.1 (2)HW21—O2W—HW22102 (3)
N3i—Ag1—N2—C12−61.6 (6)C9—C10—C15—C14−9.2 (4)
N3i—Ag1—N2—C8116.0 (6)C14—C15—C16—C172.1 (4)
C12—N2—C8—C90.4 (3)C10—C15—C16—C17−176.4 (2)
Ag1—N2—C8—C9−177.37 (18)C13—N3—C17—C16−1.8 (4)
N2—C8—C9—C100.0 (4)Ag1iii—N3—C17—C16173.52 (19)
C8—C9—C10—C11−0.3 (3)C15—C16—C17—N3−0.1 (4)
C8—C9—C10—C15−179.3 (2)N1—C1—C2—C3180.000 (2)
C9—C10—C11—C120.1 (3)C6—C1—C2—C30.000 (2)
C15—C10—C11—C12179.2 (2)C1—C2—C3—C40.000 (2)
C8—N2—C12—C11−0.6 (4)C2—C3—C4—C50.000 (2)
Ag1—N2—C12—C11177.15 (18)C2—C3—C4—C7180.000 (2)
C10—C11—C12—N20.3 (4)C3—C4—C5—C60.000 (2)
C17—N3—C13—C141.6 (4)C7—C4—C5—C6180.000 (1)
Ag1iii—N3—C13—C14−173.80 (19)C4—C5—C6—C10.000 (2)
N3—C13—C14—C150.4 (4)N1—C1—C6—C5180.000 (2)
C13—C14—C15—C16−2.3 (4)C2—C1—C6—C50.000 (2)
C13—C14—C15—C10176.3 (2)C3—C4—C7—O20.000 (1)
C11—C10—C15—C16−9.7 (4)C5—C4—C7—O2180.000 (1)
C9—C10—C15—C16169.3 (2)C3—C4—C7—O1180.000 (1)
C11—C10—C15—C14171.8 (2)C5—C4—C7—O10.000 (1)

Symmetry codes: (i) x−1, y, z−1; (ii) x, −y+3/2, z; (iii) x+1, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wiii0.85 (4)2.34 (2)3.160 (5)163
N1—H1B···O2iv0.85 (4)2.10 (4)2.932 (4)167
O1W—HW11···O10.85 (3)1.91 (3)2.747 (2)172 (3)
O1W—HW12···O40.83 (3)2.15 (3)2.927 (3)154 (3)
O2W—HW21···O10.85 (3)2.14 (3)2.979 (4)169 (3)
O2W—HW22···O5v0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···O5vi0.86 (3)2.30 (2)3.084 (3)151
O2W—HW22···N4v0.86 (3)2.63 (3)3.476 (4)167

Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x−1, y, z; (vi) x−1, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2305).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y.-M., Hou, D.-Y., Li, T.-C. & Xin, G. (2008). Acta Cryst. E64, m224. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography