PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m340.
Published online 2010 February 27. doi:  10.1107/S1600536810006653
PMCID: PMC2983535

Bis{1-[(1H-benzimidazol-1-yl)methyl-κN 3]-1H-1,2,3,4-tetra­zole}silver(I) nitrate

Abstract

In the title salt, [Ag(C9H8N6)2]NO3, the central AgI atom is linearly coordinated by the N atoms [171.97 (8)°] from two 1-[(benzimidazol-1-yl)meth­yl]-1H-1,2,3,4-tetra­zole ligands. The benzimidazole rings in adjacent mol­ecules are parallel with an average inter­planar distance of 3.461 Å; adjacent mol­ecules are linked through N—H(...)O hydrogen bonds into a linear chain along the b-axis direction.

Related literature

For similar compounds, see: Bronisz (2004 [triangle]); Meng et al. (2009 [triangle], 2004 [triangle]); Huang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m340-scheme1.jpg

Experimental

Crystal data

  • [Ag(C9H8N6)2]NO3
  • M r = 570.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m340-efi1.jpg
  • a = 11.125 (2) Å
  • b = 9.3276 (19) Å
  • c = 20.189 (4) Å
  • β = 94.80 (3)°
  • V = 2087.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.02 mm−1
  • T = 293 K
  • 0.22 × 0.18 × 0.17 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006 [triangle]) T min = 0.807, T max = 0.846
  • 25286 measured reflections
  • 4974 independent reflections
  • 4605 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.106
  • S = 1.03
  • 4974 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006653/ng2735sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006653/ng2735Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The study was supported by the Science and Technology Department of Henan Province (082102330003). The authors also thank Professor Hou Hong-Wei of Zhengzhou University for his help.

supplementary crystallographic information

Comment

In coordination and metallosupramolecular chemistry, there are many symmetrical tetrazole and benzimidazole ligands, which have been widely used as the classical ligands (Bronisz 2004; Meng et al. 2004). However, studies on unsymmetrical ligands concerning tetrazole and benzimidazole are rather insufficient (Meng et al. 2009; Huang et al. 2006). We are engaged in the synthesis of unsymmetrical N-heterocyclic ligands and synthesized compound 1-((benzimidazole-1-yl)methyl)-1-H-1,2,3,4-tetrazole. In this work, we selected this compound as ligand and generate a new complex [Ag(C9H8N6)2](NO3), (I), which is reported here. In complex (I) each AgI ion is two-coordinated by two N atom from two benzimidazole units and the nitrate anion does not coordinate to AgI ion (Fig. 1). Benzimidazole rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.461 Å. [Ag(C9H8N6)2](NO3) units are linked through these π–π interactions and various kinds of hydrogen bonds such as N—H···O, C—H···O, and C—H···N hydrogen bonds resulting in a three-dimensional packing structure in solid state as shown in Fig. 2.

Experimental

The ligand 1-((benzimidazole-1-yl)methyl)-1H-1,2,3,4-tetrazole (0.1 mmol, 0.020 g) in methanol (6 ml) was added dropwise to a solution of AgNO3 (0.05 mmol, 0.008 g) in H2O (3 ml). The resulting solution was allowed to stand at room temperature in the dark. After four weeks good quality colorless crystals were obtained from the filtrate and dried in air.

Figures

Fig. 1.
View of the title complex, showing the labeling of the 30% probability ellipsolids.

Crystal data

[Ag(C9H8N6)2]NO3F(000) = 1144
Mr = 570.31Dx = 1.815 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.125 (2) ÅCell parameters from 6007 reflections
b = 9.3276 (19) Åθ = 2.0–27.9°
c = 20.189 (4) ŵ = 1.02 mm1
β = 94.80 (3)°T = 293 K
V = 2087.6 (7) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.17 mm

Data collection

Rigaku Saturn diffractometer4974 independent reflections
Radiation source: fine-focus sealed tube4605 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006)k = −12→12
Tmin = 0.807, Tmax = 0.846l = −25→26
25286 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.056P)2 + 1.4891P] where P = (Fo2 + 2Fc2)/3
4974 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.43599 (2)0.61837 (3)0.079718 (11)0.04196 (10)
N10.59520 (18)0.7426 (2)0.08358 (11)0.0287 (4)
N20.7519 (2)0.8683 (2)0.12658 (12)0.0321 (5)
H2B0.80900.89720.15480.039*
N30.7700 (2)0.6972 (2)0.24677 (11)0.0300 (5)
N40.7703 (2)0.8136 (3)0.28571 (13)0.0447 (6)
N50.8649 (3)0.8034 (3)0.32741 (13)0.0505 (7)
N60.9263 (2)0.6814 (3)0.31659 (13)0.0452 (6)
N70.2869 (2)0.4769 (2)0.06530 (11)0.0320 (5)
N80.1619 (2)0.2970 (2)0.07878 (11)0.0330 (5)
H8C0.12840.22620.09730.040*
N90.2313 (2)0.3251 (2)0.22291 (11)0.0302 (5)
N100.1337 (2)0.4074 (3)0.22742 (12)0.0360 (5)
N110.0800 (2)0.3607 (3)0.27719 (13)0.0415 (6)
N120.1414 (3)0.2475 (3)0.30616 (13)0.0452 (6)
N130.0308 (2)0.0190 (3)0.17241 (12)0.0433 (6)
C10.6263 (2)0.8422 (3)0.03637 (13)0.0294 (5)
C20.5768 (3)0.8669 (3)−0.02817 (14)0.0350 (6)
H2A0.51200.8133−0.04670.042*
C30.6278 (3)0.9742 (3)−0.06341 (14)0.0414 (7)
H3A0.59720.9924−0.10690.050*
C40.7241 (3)1.0564 (4)−0.03570 (16)0.0449 (7)
H4A0.75501.1291−0.06090.054*
C50.7746 (3)1.0324 (3)0.02809 (16)0.0428 (7)
H5A0.83901.08670.04660.051*
C60.7239 (2)0.9228 (3)0.06337 (13)0.0306 (5)
C70.6732 (2)0.7616 (3)0.13568 (13)0.0286 (5)
C80.6710 (3)0.6705 (3)0.19633 (14)0.0362 (6)
H8A0.59540.68640.21580.043*
H8B0.67340.57050.18320.043*
C90.8655 (3)0.6184 (3)0.26680 (15)0.0373 (6)
H9A0.88590.53150.24820.045*
C100.2093 (2)0.4638 (3)0.00770 (13)0.0302 (5)
C110.2002 (3)0.5461 (3)−0.04975 (14)0.0393 (6)
H11A0.25330.6211−0.05560.047*
C120.1095 (3)0.5122 (4)−0.09771 (15)0.0445 (7)
H12A0.09930.5677−0.13600.053*
C130.0325 (3)0.3965 (4)−0.09021 (16)0.0482 (8)
H13A−0.02600.3748−0.12430.058*
C140.0409 (3)0.3135 (4)−0.03344 (15)0.0409 (7)
H14A−0.01090.2367−0.02840.049*
C150.1305 (2)0.3501 (3)0.01585 (14)0.0309 (5)
C160.2541 (2)0.3759 (3)0.10575 (14)0.0311 (6)
C170.3165 (3)0.3487 (4)0.17282 (14)0.0386 (6)
H17A0.36790.26510.17070.046*
H17B0.36740.43010.18580.046*
C180.2339 (3)0.2295 (3)0.27144 (15)0.0413 (7)
H18A0.29300.15980.27960.050*
O1−0.0183 (3)−0.0797 (3)0.19941 (14)0.0774 (10)
O20.1406 (3)0.0210 (4)0.16912 (17)0.0827 (9)
O3−0.0271 (4)0.1221 (4)0.1498 (2)0.1045 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.03417 (14)0.04656 (16)0.04425 (16)−0.01549 (9)−0.00206 (10)0.00349 (10)
N10.0227 (10)0.0308 (11)0.0324 (11)−0.0037 (8)0.0008 (8)0.0011 (9)
N20.0289 (11)0.0329 (11)0.0336 (12)−0.0057 (9)−0.0038 (9)0.0027 (9)
N30.0313 (11)0.0287 (11)0.0296 (11)0.0018 (9)−0.0009 (9)0.0013 (9)
N40.0503 (16)0.0381 (13)0.0455 (15)0.0081 (12)0.0027 (12)−0.0096 (11)
N50.0604 (18)0.0486 (16)0.0410 (15)−0.0031 (13)−0.0035 (13)−0.0090 (12)
N60.0443 (15)0.0448 (14)0.0438 (15)−0.0016 (12)−0.0119 (11)0.0039 (12)
N70.0299 (11)0.0349 (12)0.0313 (12)−0.0058 (9)0.0034 (9)−0.0035 (9)
N80.0311 (11)0.0342 (12)0.0337 (12)−0.0066 (9)0.0027 (9)0.0043 (9)
N90.0305 (11)0.0312 (11)0.0286 (11)0.0035 (9)0.0022 (9)0.0027 (9)
N100.0312 (12)0.0371 (12)0.0397 (13)0.0050 (9)0.0022 (10)0.0052 (10)
N110.0413 (14)0.0438 (14)0.0401 (14)0.0019 (11)0.0078 (11)−0.0003 (11)
N120.0519 (16)0.0451 (15)0.0398 (14)0.0022 (12)0.0106 (12)0.0096 (11)
N130.0479 (16)0.0464 (15)0.0344 (13)−0.0141 (12)−0.0037 (11)0.0009 (11)
C10.0243 (12)0.0310 (12)0.0334 (14)0.0011 (10)0.0053 (10)−0.0006 (10)
C20.0333 (14)0.0418 (15)0.0295 (14)0.0011 (11)−0.0003 (11)−0.0023 (11)
C30.0475 (17)0.0470 (17)0.0297 (14)0.0088 (14)0.0039 (12)0.0040 (12)
C40.0507 (19)0.0415 (16)0.0437 (17)−0.0041 (14)0.0108 (14)0.0093 (14)
C50.0428 (17)0.0389 (15)0.0462 (17)−0.0119 (13)0.0007 (13)0.0035 (13)
C60.0296 (13)0.0317 (13)0.0305 (13)−0.0008 (10)0.0023 (10)0.0009 (11)
C70.0226 (11)0.0294 (12)0.0336 (13)−0.0001 (9)0.0010 (10)0.0002 (10)
C80.0310 (14)0.0381 (14)0.0384 (15)−0.0054 (11)−0.0034 (11)0.0081 (12)
C90.0366 (15)0.0328 (14)0.0413 (16)0.0049 (11)−0.0046 (12)−0.0004 (11)
C100.0268 (12)0.0335 (13)0.0310 (13)−0.0006 (10)0.0058 (10)−0.0049 (11)
C110.0459 (17)0.0396 (15)0.0342 (15)0.0011 (13)0.0129 (12)0.0037 (12)
C120.0477 (18)0.0555 (19)0.0308 (15)0.0114 (15)0.0052 (13)0.0029 (13)
C130.0405 (17)0.069 (2)0.0337 (16)0.0098 (15)−0.0039 (13)−0.0109 (15)
C140.0309 (14)0.0471 (17)0.0442 (17)−0.0037 (12)0.0003 (12)−0.0071 (14)
C150.0266 (13)0.0347 (13)0.0315 (14)−0.0007 (10)0.0044 (10)−0.0033 (11)
C160.0266 (13)0.0361 (14)0.0310 (14)−0.0037 (10)0.0049 (10)−0.0023 (11)
C170.0296 (14)0.0495 (17)0.0365 (15)−0.0010 (12)0.0016 (11)0.0034 (13)
C180.0450 (17)0.0364 (15)0.0422 (17)0.0068 (12)0.0012 (13)0.0095 (13)
O10.0706 (18)0.092 (2)0.0654 (17)−0.0480 (17)−0.0162 (14)0.0345 (16)
O20.0586 (18)0.090 (2)0.103 (2)−0.0185 (16)0.0260 (17)−0.0062 (19)
O30.112 (3)0.073 (2)0.120 (3)0.0034 (19)−0.046 (3)0.024 (2)

Geometric parameters (Å, °)

Ag1—N12.112 (2)C1—C61.393 (4)
Ag1—N72.121 (2)C2—C31.377 (4)
N1—C71.318 (3)C2—H2A0.9300
N1—C11.395 (3)C3—C41.396 (5)
N2—C71.348 (3)C3—H3A0.9300
N2—C61.385 (4)C4—C51.379 (4)
N2—H2B0.8600C4—H4A0.9300
N3—C91.327 (4)C5—C61.392 (4)
N3—N41.340 (3)C5—H5A0.9300
N3—C81.457 (3)C7—C81.492 (4)
N4—N51.295 (4)C8—H8A0.9700
N5—N61.354 (4)C8—H8B0.9700
N6—C91.304 (4)C9—H9A0.9300
N7—C161.318 (3)C10—C111.387 (4)
N7—C101.394 (3)C10—C151.395 (4)
N8—C161.340 (3)C11—C121.375 (4)
N8—C151.381 (3)C11—H11A0.9300
N8—H8C0.8600C12—C131.394 (5)
N9—C181.323 (3)C12—H12A0.9300
N9—N101.339 (3)C13—C141.380 (5)
N9—C171.459 (4)C13—H13A0.9300
N10—N111.287 (4)C14—C151.391 (4)
N11—N121.363 (4)C14—H14A0.9300
N12—C181.304 (4)C16—C171.491 (4)
N13—O11.222 (3)C17—H17A0.9700
N13—O31.224 (4)C17—H17B0.9700
N13—O21.229 (4)C18—H18A0.9300
C1—C21.391 (4)
N1—Ag1—N7171.97 (8)N2—C6—C1105.7 (2)
C7—N1—C1105.7 (2)C5—C6—C1122.1 (3)
C7—N1—Ag1126.67 (18)N1—C7—N2112.5 (2)
C1—N1—Ag1126.51 (17)N1—C7—C8121.5 (2)
C7—N2—C6107.3 (2)N2—C7—C8126.0 (2)
C7—N2—H2B126.3N3—C8—C7114.4 (2)
C6—N2—H2B126.3N3—C8—H8A108.7
C9—N3—N4107.9 (2)C7—C8—H8A108.7
C9—N3—C8131.1 (2)N3—C8—H8B108.7
N4—N3—C8120.9 (2)C7—C8—H8B108.7
N5—N4—N3106.5 (2)H8A—C8—H8B107.6
N4—N5—N6110.5 (2)N6—C9—N3109.6 (3)
C9—N6—N5105.5 (2)N6—C9—H9A125.2
C16—N7—C10105.7 (2)N3—C9—H9A125.2
C16—N7—Ag1127.84 (19)C11—C10—N7130.2 (3)
C10—N7—Ag1126.27 (18)C11—C10—C15121.1 (3)
C16—N8—C15107.6 (2)N7—C10—C15108.6 (2)
C16—N8—H8C126.2C12—C11—C10117.4 (3)
C15—N8—H8C126.2C12—C11—H11A121.3
C18—N9—N10107.7 (2)C10—C11—H11A121.3
C18—N9—C17129.7 (2)C11—C12—C13121.5 (3)
N10—N9—C17122.5 (2)C11—C12—H12A119.2
N11—N10—N9106.9 (2)C13—C12—H12A119.2
N10—N11—N12110.4 (2)C14—C13—C12121.7 (3)
C18—N12—N11105.0 (2)C14—C13—H13A119.2
O1—N13—O3121.2 (4)C12—C13—H13A119.2
O1—N13—O2121.2 (3)C13—C14—C15116.8 (3)
O3—N13—O2117.5 (3)C13—C14—H14A121.6
C2—C1—C6120.8 (3)C15—C14—H14A121.6
C2—C1—N1130.5 (2)N8—C15—C14133.0 (3)
C6—C1—N1108.8 (2)N8—C15—C10105.5 (2)
C3—C2—C1117.2 (3)C14—C15—C10121.5 (3)
C3—C2—H2A121.4N7—C16—N8112.5 (2)
C1—C2—H2A121.4N7—C16—C17123.6 (2)
C2—C3—C4121.8 (3)N8—C16—C17123.9 (2)
C2—C3—H3A119.1N9—C17—C16112.0 (2)
C4—C3—H3A119.1N9—C17—H17A109.2
C5—C4—C3121.6 (3)C16—C17—H17A109.2
C5—C4—H4A119.2N9—C17—H17B109.2
C3—C4—H4A119.2C16—C17—H17B109.2
C4—C5—C6116.5 (3)H17A—C17—H17B107.9
C4—C5—H5A121.7N12—C18—N9110.0 (3)
C6—C5—H5A121.7N12—C18—H18A125.0
N2—C6—C5132.2 (3)N9—C18—H18A125.0
N7—Ag1—N1—C7−120.6 (6)N4—N3—C8—C775.8 (3)
N7—Ag1—N1—C173.0 (7)N1—C7—C8—N3174.7 (2)
C9—N3—N4—N50.5 (3)N2—C7—C8—N3−4.5 (4)
C8—N3—N4—N5176.4 (3)N5—N6—C9—N30.2 (4)
N3—N4—N5—N6−0.4 (4)N4—N3—C9—N6−0.4 (3)
N4—N5—N6—C90.1 (4)C8—N3—C9—N6−175.8 (3)
N1—Ag1—N7—C16109.2 (6)C16—N7—C10—C11177.1 (3)
N1—Ag1—N7—C10−64.6 (7)Ag1—N7—C10—C11−8.1 (4)
C18—N9—N10—N11−0.3 (3)C16—N7—C10—C15−0.5 (3)
C17—N9—N10—N11−178.4 (2)Ag1—N7—C10—C15174.33 (18)
N9—N10—N11—N120.1 (3)N7—C10—C11—C12−176.5 (3)
N10—N11—N12—C180.2 (4)C15—C10—C11—C120.9 (4)
C7—N1—C1—C2178.0 (3)C10—C11—C12—C13−2.4 (5)
Ag1—N1—C1—C2−13.3 (4)C11—C12—C13—C142.2 (5)
C7—N1—C1—C6−1.4 (3)C12—C13—C14—C15−0.4 (5)
Ag1—N1—C1—C6167.28 (18)C16—N8—C15—C14−178.1 (3)
C6—C1—C2—C3−0.4 (4)C16—N8—C15—C100.0 (3)
N1—C1—C2—C3−179.8 (3)C13—C14—C15—N8176.8 (3)
C1—C2—C3—C4−0.8 (4)C13—C14—C15—C10−1.1 (4)
C2—C3—C4—C51.2 (5)C11—C10—C15—N8−177.5 (2)
C3—C4—C5—C6−0.4 (5)N7—C10—C15—N80.3 (3)
C7—N2—C6—C5180.0 (3)C11—C10—C15—C140.9 (4)
C7—N2—C6—C1−0.4 (3)N7—C10—C15—C14178.7 (3)
C4—C5—C6—N2178.7 (3)C10—N7—C16—N80.6 (3)
C4—C5—C6—C1−0.8 (5)Ag1—N7—C16—N8−174.18 (18)
C2—C1—C6—N2−178.4 (2)C10—N7—C16—C17178.0 (2)
N1—C1—C6—N21.1 (3)Ag1—N7—C16—C173.3 (4)
C2—C1—C6—C51.3 (4)C15—N8—C16—N7−0.4 (3)
N1—C1—C6—C5−179.3 (3)C15—N8—C16—C17−177.8 (3)
C1—N1—C7—N21.1 (3)C18—N9—C17—C16137.7 (3)
Ag1—N1—C7—N2−167.49 (17)N10—N9—C17—C16−44.6 (4)
C1—N1—C7—C8−178.2 (2)N7—C16—C17—N9136.4 (3)
Ag1—N1—C7—C813.2 (4)N8—C16—C17—N9−46.5 (4)
C6—N2—C7—N1−0.5 (3)N11—N12—C18—N9−0.4 (4)
C6—N2—C7—C8178.8 (3)N10—N9—C18—N120.4 (3)
C9—N3—C8—C7−109.3 (3)C17—N9—C18—N12178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8C···O30.862.323.105 (5)153
N8—H8C···O20.862.403.176 (4)151
N2—H2B···O1i0.862.062.881 (4)159
C5—H5A···O3i0.932.483.271 (5)143
C8—H8A···N11ii0.972.553.388 (4)144
C8—H8B···N4iii0.972.543.406 (4)148
C8—H8B···N5iii0.972.533.476 (4)164
C17—H17A···N6iii0.972.413.250 (4)145
C18—H18A···N10iv0.932.503.346 (4)151

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2735).

References

  • Bronisz, R. (2004). Inorg. Chim. Acta, 357, 396–404.
  • Huang, M. H., Liu, P., Wang, J., Chen, Y. & Liu, Q. Y. (2006). Inorg. Chem. Commun.9, 952–954.
  • Meng, X. R., Jin, S. Z., Hou, H. W., Du, C. X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.
  • Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem.43, 3528–3536. [PubMed]
  • Rigaku/MSC (2006). CrystalStructure and CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography