PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m261.
Published online 2010 February 6. doi:  10.1107/S1600536810003879
PMCID: PMC2983533

catena-Poly[[bis­(pyrazine-2-carbox­amide)mercury(II)]-di-μ-chlorido]

Abstract

In the polymeric title compound, [HgCl2(C5H5N3O)2]n, the HgII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-0m261-efi1.jpg) adopts a distorted trans-HgN2Cl4 octa­hedral coordination geometry. In the crystal, adjacent mercury ions are bridged by pairs of chloride ions, generating infinite [100] chains, and N—H(...)O and N—H(...)(N,N) hydrogen bonds help to consolidate the packing.

Related literature

For related structures, see: Cati & Stoeckli-Evans (2004 [triangle]); Hausmann & Brooker (2004 [triangle]); Mir Mohammad Sadegh et al. (2010 [triangle]); Miyazaki et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m261-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C5H5N3O)2]
  • M r = 517.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m261-efi2.jpg
  • a = 3.8451 (8) Å
  • b = 6.4170 (13) Å
  • c = 14.854 (3) Å
  • α = 101.14 (3)°
  • β = 92.53 (3)°
  • γ = 94.69 (3)°
  • V = 357.73 (13) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 11.14 mm−1
  • T = 298 K
  • 0.48 × 0.15 × 0.06 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical [optically, by X-RED and XSHAPE (Stoe & Cie, 2005 [triangle])] T min = 0.150, T max = 0.515
  • 4201 measured reflections
  • 1887 independent reflections
  • 1880 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.144
  • S = 1.08
  • 1887 reflections
  • 97 parameters
  • H-atom parameters constrained
  • Δρmax = 3.25 e Å−3
  • Δρmin = −3.75 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003879/hb5301sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003879/hb5301Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge Shahid Beheshti University, G.C., for financial support.

supplementary crystallographic information

Comment

The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann and Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al. 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Cl atoms. The bridging function of chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

A solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgCl2 (0.272 g, 1.0 mmol) in methanol (5 ml) at room temperature. Colourless plates of (I) were obtained by slow evaporation from methanolic solution after one week (yield; 0.359 g, 69.3%).

Refinement

All of the H atoms were positioned geometrically with C—H = 0.93 and 0.86Å for aromatic ring and NH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and deppest hole are near to Hg (0.87 and 0.75Å respectively).

Figures

Fig. 1.
The molecular staucture with displacement ellipsoids drawn at 30% probability level.
Fig. 2.
A packing diagram of (I) in b-directrion. Hydrogen bonds are shown as dashed lines.

Crystal data

[HgCl2(C5H5N3O)2]Z = 1
Mr = 517.73F(000) = 242
Triclinic, P1Dx = 2.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8451 (8) ÅCell parameters from 976 reflections
b = 6.4170 (13) Åθ = 3.3–29.1°
c = 14.854 (3) ŵ = 11.14 mm1
α = 101.14 (3)°T = 298 K
β = 92.53 (3)°Plate, colourless
γ = 94.69 (3)°0.48 × 0.15 × 0.06 mm
V = 357.73 (13) Å3

Data collection

Stoe IPDS II diffractometer1880 reflections with I > 2σ(I)
ω scansRint = 0.096
Absorption correction: numerical [optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)]θmax = 29.1°, θmin = 3.3°
Tmin = 0.150, Tmax = 0.515h = −5→4
4201 measured reflectionsk = −8→8
1887 independent reflectionsl = −20→20

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054w = 1/[σ2(Fo2) + (0.110P)2 + 0.204P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 1.08Δρmax = 3.25 e Å3
1887 reflectionsΔρmin = −3.75 e Å3
97 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.397 (3)0.5265 (12)0.2863 (6)0.0431 (16)
H10.30770.65830.30140.052*
C20.400 (3)0.4268 (13)0.1935 (6)0.0431 (16)
H20.31770.49530.14820.052*
C30.632 (2)0.1435 (13)0.2363 (6)0.0391 (14)
H30.70830.0080.22150.047*
C40.639 (2)0.2438 (11)0.3279 (5)0.0341 (12)
C50.793 (2)0.1365 (12)0.3999 (6)0.0385 (14)
N10.520 (2)0.4354 (11)0.3536 (5)0.0429 (14)
N20.519 (2)0.2350 (11)0.1690 (5)0.0412 (13)
N30.784 (3)0.2340 (13)0.4863 (6)0.0516 (19)
H3A0.87240.17950.52960.062*
H3B0.68880.3520.49940.062*
O10.924 (3)−0.0327 (12)0.3755 (5)0.0539 (18)
Cl10.8689 (6)−0.2371 (3)0.05218 (16)0.0444 (4)
Hg10.5000.03963 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.054 (4)0.036 (3)0.041 (4)0.016 (3)−0.005 (3)0.007 (3)
C20.056 (4)0.042 (3)0.034 (4)0.011 (3)0.000 (3)0.012 (3)
C30.046 (4)0.042 (3)0.029 (3)0.016 (3)0.001 (3)0.004 (2)
C40.038 (3)0.036 (3)0.029 (3)0.009 (2)−0.001 (3)0.006 (2)
C50.045 (4)0.040 (3)0.030 (3)0.006 (3)−0.004 (3)0.008 (2)
N10.052 (4)0.038 (3)0.038 (3)0.012 (2)−0.001 (3)0.003 (2)
N20.049 (4)0.045 (3)0.031 (3)0.014 (2)−0.001 (3)0.007 (2)
N30.077 (6)0.045 (3)0.035 (3)0.032 (3)−0.003 (3)0.003 (3)
O10.084 (5)0.047 (3)0.033 (3)0.033 (3)0.001 (3)0.004 (2)
Cl10.0448 (9)0.0477 (9)0.0434 (10)0.0146 (7)0.0022 (8)0.0114 (7)
Hg10.0397 (2)0.0505 (3)0.0305 (2)0.01765 (14)−0.00015 (15)0.00733 (15)

Geometric parameters (Å, °)

C1—N11.340 (12)C5—N31.318 (11)
C1—C21.404 (12)N3—H3A0.86
C1—H10.93N3—H3B0.86
C2—N21.338 (11)Cl1—Hg1i2.970 (2)
C2—H20.93Hg1—Cl1ii2.375 (2)
C3—N21.327 (11)Hg1—N2ii2.661 (7)
C3—C41.387 (10)Hg1—Cl1iii2.970 (2)
C3—H30.93Hg1—N22.661 (7)
C4—N11.338 (10)Hg1—Cl1iv2.970 (2)
C4—C51.506 (11)Hg1—Cl12.375 (2)
C5—O11.232 (11)
N1—C1—C2121.3 (7)C5—N3—H3A120
N1—C1—H1119.4C5—N3—H3B120
C2—C1—H1119.4H3A—N3—H3B120
N2—C2—C1121.3 (8)Hg1—Cl1—Hg1i91.31 (7)
N2—C2—H2119.4Cl1ii—Hg1—Cl1180.0
C1—C2—H2119.4Cl1ii—Hg1—N289.49 (17)
N2—C3—C4122.0 (7)Cl1—Hg1—N290.51 (17)
N2—C3—H3119Cl1ii—Hg1—N2ii90.51 (17)
C4—C3—H3119Cl1—Hg1—N2ii89.49 (17)
N1—C4—C3121.7 (8)N2—Hg1—N2ii180.0
N1—C4—C5119.3 (7)Cl1ii—Hg1—Cl1iii91.31 (7)
C3—C4—C5118.9 (7)Cl1—Hg1—Cl1iii88.69 (7)
O1—C5—N3124.0 (8)N2—Hg1—Cl1iii94.05 (18)
O1—C5—C4119.1 (7)N2ii—Hg1—Cl1iii85.95 (18)
N3—C5—C4116.9 (7)Cl1ii—Hg1—Cl1iv88.69 (7)
C4—N1—C1116.7 (7)Cl1—Hg1—Cl1iv91.31 (7)
C3—N2—C2117.0 (7)N2—Hg1—Cl1iv85.95 (18)
C3—N2—Hg1116.0 (5)N2ii—Hg1—Cl1iv94.05 (18)
C2—N2—Hg1126.8 (6)Cl1iii—Hg1—Cl1iv180.0
N1—C1—C2—N21.5 (15)C1—C2—N2—Hg1174.2 (7)
N2—C3—C4—N12.4 (13)Hg1i—Cl1—Hg1—N2−94.04 (18)
N2—C3—C4—C5−175.8 (8)Hg1i—Cl1—Hg1—N2ii85.96 (18)
N1—C4—C5—O1−174.9 (9)Hg1i—Cl1—Hg1—Cl1iii0
C3—C4—C5—O13.3 (12)Hg1i—Cl1—Hg1—Cl1iv180
N1—C4—C5—N34.0 (12)C3—N2—Hg1—Cl1ii163.8 (6)
C3—C4—C5—N3−177.8 (9)C2—N2—Hg1—Cl1ii−10.0 (8)
C3—C4—N1—C1−0.5 (12)C3—N2—Hg1—Cl1−16.2 (6)
C5—C4—N1—C1177.7 (8)C2—N2—Hg1—Cl1170.0 (8)
C2—C1—N1—C4−1.4 (13)C3—N2—Hg1—Cl1iii−104.9 (6)
C4—C3—N2—C2−2.3 (13)C2—N2—Hg1—Cl1iii81.3 (8)
C4—C3—N2—Hg1−176.7 (6)C3—N2—Hg1—Cl1iv75.1 (6)
C1—C2—N2—C30.4 (13)C2—N2—Hg1—Cl1iv−98.7 (8)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O1v0.862.012.864 (12)176
N3—H3B···N10.862.402.758 (12)105
N3—H3B···N1vi0.862.543.198 (12)134

Symmetry codes: (v) −x+2, −y, −z+1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5301).

References

  • Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531. [PubMed]
  • Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158. [PMC free article] [PubMed]
  • Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed.46, 905–908. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and XSHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography