PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o628.
Published online 2010 February 13. doi:  10.1107/S1600536810005271
PMCID: PMC2983529

N-(3-Chloro­propion­yl)-N′-phenyl­thio­urea

Abstract

The title compound, C10H11ClN2OS, adopts a cis-trans configuration with respect to the position of the phenyl and 3-chloro­propionyl groups relative to the thiono group across the C—N bonds. The benzene ring is perpendicular to the propionyl thio­urea fragment with a dihedral angle of 82.62 (10)°. An intra­molecular N—H(...)O inter­action occurs. The crystal structure is stabilized by inter­molecular N—H(...)S hydrogen bonds, which link pairs of mol­ecules, building up R 2 2(8) ring motifs, and C—H.. π inter­actions.

Related literature

For related structures, see: Ismail et al. (2007 [triangle]); Ismail & Yamin (2009 [triangle]). For hydrogen-bond motifs, see: Etter et al.(1990 [triangle]); Bernstein et al. (1995 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o628-scheme1.jpg

Experimental

Crystal data

  • C10H11ClN2OS
  • M r = 242.72
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o628-efi1.jpg
  • a = 5.8088 (12) Å
  • b = 10.467 (2) Å
  • c = 10.660 (2) Å
  • α = 112.811 (3)°
  • β = 101.855 (3)°
  • γ = 95.483 (3)°
  • V = 573.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 298 K
  • 0.49 × 0.45 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.795, T max = 0.879
  • 5617 measured reflections
  • 2103 independent reflections
  • 1798 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.04
  • 2103 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005271/dn2535sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005271/dn2535Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for the research grant UKM-OUP-NBT-27–144 and Universiti Kebangsaan Malaysia for the research facilities.

supplementary crystallographic information

Comment

The presence of both alpha and ipso chlorine atoms in 2-chloropropionyl chloride could lead to a complicated reaction when reacted with a nucleophile such as thiocyanate depending on the solvent used. For example, the reaction of 2-chloropropionyl chloride with ammonium thiocyanate and succeedingly with aniline in acetone was found to give 4,5,6-trimethyl-1- phenyl-3,4-dihydropyrimidine-2(1H)-thione (Ismail et al., 2007) instead of the expected N-phenyl-N'-(2-chloropropionyl) thiourea. However, in the present study, the same reaction but with 3-chloropropionyl chloride, the expected N-phenyl-N'-(3-chloropropionyl)thiourea (I) was indeed obtained.

The whole molecule is not planar (Fig.1). The benzene (C5—C10) ring and propionylthiourea fragment, S1/N1/N2/(C1—C4) are each planar with maximum deviation of 0.062 (2)Å for C3 atom from the least square plane. The benzene ring is roughly perpendicular to the propionylthiourea fragment with dihedral angle between the two planes of 82.62 (10)°. A smaller dihedral angle of 12.68 (7)° was observed in an analogous compound of N-(3-chloropropionyl)-N'(4-fluorophenyl) thiourea (II) (Ismail & Yamin, 2009).The trans-cis configuration of the propionyl and phenyl groups relative to the thiono group respectively, across their C—N bonds, is maintained. The bond lengths and angles are in normal range (Allen et al.,1987) and comparable to those in (II).

There is one intrahydrogen bond, N2—H2A···O1 forming the pseudo-six membered ring, N2/C4/N1/C3/O1···H2A. In the crystal structure, the molecules are linked by N1—H1A···S1 intermolecular hydrogen bond forming dimers through a R22(8) ring (Etter et al., 1990 ; Bernstein et al., 1995) extending along the c-axis (Table 1, Fig.2). In addition, there is also a C1—H1C.,.π bond with the benzene (C5—C10) ring (Table 1).

Experimental

30 ml acetone solution of aniline was added into 30 ml acetone containing 3-chloropropionyl isothiocyanate (1.49, 0.01 mol). The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. The colorless crsytals were obtained by recrystallization from ethanol. Yield 90%; m.p 389.7-391.2 K; 1H NMR (400 MHz, CDCl3-d6):δ (ppm)= 12.32 (s,1H), 9.99 (s,1H), 7.63 (m,4H, HAr), 7.41 (s,1H, HAr), 3.8 (d,2H,Cl—CH2), 2.9 (d,2H,CH2). 13C NMR (400 MHz, CDCl3-d6):δ (ppm)= 38.32, 39.76, 124.70, 127.35, 127.35, 129.08, 129.08, 137.30, 171.22, 178.49.

Refinement

After locating the hydrogen atoms from a different-Fourier map, they were positioned geonmetrically with C—H=0.93-0.97Å and N—H=0.86Å respectively, and constrained to all their parent atoms with Uiso(H)=1.2Ueq(parent atom). There is a highest peak and deepest hole of 0.97 and 0.81 Å respectively from S1 atom.

Figures

Fig. 1.
The molecular structure of (I),with displacement ellipsods drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x+2, -y+2, -z+1]

Crystal data

C10H11ClN2OSZ = 2
Mr = 242.72F(000) = 252
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8088 (12) ÅCell parameters from 3405 reflections
b = 10.467 (2) Åθ = 2.1–25.5°
c = 10.660 (2) ŵ = 0.49 mm1
α = 112.811 (3)°T = 298 K
β = 101.855 (3)°Block, colourless
γ = 95.483 (3)°0.49 × 0.45 × 0.27 mm
V = 573.6 (2) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer2103 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Detector resolution: 83.66 pixels mm-1Rint = 0.016
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −7→7
Tmin = 0.795, Tmax = 0.879k = −12→12
5617 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2663P] where P = (Fo2 + 2Fc2)/3
2103 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.23811 (13)1.37819 (8)0.50799 (7)0.0777 (3)
S11.10045 (13)0.86771 (7)0.31949 (6)0.0653 (2)
O10.5152 (3)1.07380 (16)0.16725 (14)0.0539 (4)
N10.7823 (3)1.03263 (18)0.32922 (17)0.0497 (4)
H1A0.84131.06140.41860.060*
N20.7847 (3)0.87565 (18)0.10659 (17)0.0484 (4)
H2A0.67810.91540.07530.058*
C10.3405 (4)1.2689 (3)0.3640 (2)0.0594 (6)
H1B0.20911.19350.29670.071*
H1C0.39311.32440.31670.071*
C20.5422 (4)1.2067 (2)0.4124 (2)0.0539 (5)
H2B0.49681.16230.47070.065*
H2C0.68091.28150.46960.065*
C30.6079 (4)1.0991 (2)0.2902 (2)0.0434 (5)
C40.8769 (4)0.9252 (2)0.2443 (2)0.0452 (5)
C50.8541 (4)0.7586 (2)0.00691 (19)0.0435 (5)
C61.0500 (4)0.7804 (2)−0.0412 (2)0.0543 (5)
H6A1.14040.8707−0.00870.065*
C71.1101 (5)0.6653 (3)−0.1391 (3)0.0618 (6)
H7A1.24210.6787−0.17250.074*
C80.9790 (5)0.5329 (3)−0.1872 (2)0.0635 (7)
H8A1.02210.4565−0.25240.076*
C90.7837 (5)0.5125 (2)−0.1393 (3)0.0646 (7)
H9A0.69340.4221−0.17240.078*
C100.7203 (4)0.6258 (2)−0.0418 (2)0.0541 (5)
H10A0.58720.6120−0.00940.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0802 (5)0.0871 (5)0.0664 (4)0.0432 (4)0.0358 (4)0.0181 (4)
S10.0877 (5)0.0664 (4)0.0387 (3)0.0470 (3)0.0082 (3)0.0157 (3)
O10.0636 (9)0.0576 (9)0.0367 (8)0.0276 (7)0.0084 (7)0.0145 (7)
N10.0632 (11)0.0471 (10)0.0316 (8)0.0248 (8)0.0058 (7)0.0090 (7)
N20.0596 (11)0.0462 (10)0.0345 (9)0.0255 (8)0.0069 (7)0.0110 (7)
C10.0641 (14)0.0675 (15)0.0476 (12)0.0343 (12)0.0188 (11)0.0180 (11)
C20.0604 (13)0.0556 (13)0.0400 (11)0.0260 (11)0.0097 (10)0.0126 (10)
C30.0480 (11)0.0397 (10)0.0384 (11)0.0137 (9)0.0082 (8)0.0125 (8)
C40.0560 (12)0.0387 (10)0.0384 (10)0.0162 (9)0.0102 (9)0.0130 (8)
C50.0524 (11)0.0440 (11)0.0313 (9)0.0205 (9)0.0066 (8)0.0126 (8)
C60.0513 (12)0.0552 (13)0.0508 (12)0.0123 (10)0.0090 (10)0.0182 (10)
C70.0600 (14)0.0798 (18)0.0559 (14)0.0321 (13)0.0245 (11)0.0301 (13)
C80.0891 (18)0.0620 (15)0.0459 (13)0.0419 (14)0.0251 (12)0.0194 (11)
C90.0920 (19)0.0416 (12)0.0555 (14)0.0182 (12)0.0218 (13)0.0130 (10)
C100.0650 (14)0.0484 (12)0.0517 (12)0.0169 (10)0.0219 (11)0.0192 (10)

Geometric parameters (Å, °)

Cl1—C11.778 (2)C2—H2B0.9700
S1—C41.669 (2)C2—H2C0.9700
O1—C31.221 (2)C5—C101.369 (3)
N1—C31.367 (3)C5—C61.375 (3)
N1—C41.386 (3)C6—C71.385 (3)
N1—H1A0.8600C6—H6A0.9300
N2—C41.320 (3)C7—C81.361 (4)
N2—C51.433 (2)C7—H7A0.9300
N2—H2A0.8600C8—C91.367 (4)
C1—C21.490 (3)C8—H8A0.9300
C1—H1B0.9700C9—C101.381 (3)
C1—H1C0.9700C9—H9A0.9300
C2—C31.503 (3)C10—H10A0.9300
C3—N1—C4128.77 (17)N2—C4—N1117.03 (18)
C3—N1—H1A115.6N2—C4—S1123.88 (16)
C4—N1—H1A115.6N1—C4—S1119.09 (15)
C4—N2—C5122.97 (17)C10—C5—C6120.60 (19)
C4—N2—H2A118.5C10—C5—N2119.22 (19)
C5—N2—H2A118.5C6—C5—N2120.17 (19)
C2—C1—Cl1111.32 (16)C5—C6—C7118.7 (2)
C2—C1—H1B109.4C5—C6—H6A120.7
Cl1—C1—H1B109.4C7—C6—H6A120.7
C2—C1—H1C109.4C8—C7—C6121.0 (2)
Cl1—C1—H1C109.4C8—C7—H7A119.5
H1B—C1—H1C108.0C6—C7—H7A119.5
C1—C2—C3111.71 (17)C7—C8—C9119.9 (2)
C1—C2—H2B109.3C7—C8—H8A120.1
C3—C2—H2B109.3C9—C8—H8A120.1
C1—C2—H2C109.3C8—C9—C10120.1 (2)
C3—C2—H2C109.3C8—C9—H9A119.9
H2B—C2—H2C107.9C10—C9—H9A119.9
O1—C3—N1122.97 (18)C5—C10—C9119.7 (2)
O1—C3—C2123.17 (18)C5—C10—H10A120.1
N1—C3—C2113.86 (17)C9—C10—H10A120.1
Cl1—C1—C2—C3172.29 (17)C4—N2—C5—C6−86.1 (3)
C4—N1—C3—O1−3.2 (4)C10—C5—C6—C7−0.5 (3)
C4—N1—C3—C2177.1 (2)N2—C5—C6—C7−179.04 (19)
C1—C2—C3—O14.3 (3)C5—C6—C7—C8−0.1 (3)
C1—C2—C3—N1−176.1 (2)C6—C7—C8—C90.4 (4)
C5—N2—C4—N1−175.79 (19)C7—C8—C9—C10−0.3 (4)
C5—N2—C4—S15.2 (3)C6—C5—C10—C90.6 (3)
C3—N1—C4—N2−2.1 (3)N2—C5—C10—C9179.2 (2)
C3—N1—C4—S1176.94 (18)C8—C9—C10—C5−0.2 (4)
C4—N2—C5—C1095.3 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.012.677 (3)134
N1—H1A···S1i0.862.533.3709 (19)165
C1—H1C···Cg1ii0.972.843.466123

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2535).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Ismail, N. L., Othman, E. & Yamin, B. M. (2007). Acta Cryst. E63, o2442–o2443.
  • Ismail, N. & Yamin, B. M. (2009). X-ray Struct. Anal. Online, 25, 39–40
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography