PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o592–o593.
Published online 2010 February 13. doi:  10.1107/S1600536810004897
PMCID: PMC2983523

2-(Naphthalen-2-yl)azulene

Abstract

In the title compound, C20H14, a naphthalene ring system is linked at the 2-position to the 2-C atom of the five-membered ring of an azulene unit. The compound crystallizes with two reasonably similar mol­ecules in the asymmetric unit. Neither mol­ecule is perfectly planar: the r.m.s. deviations from the best fit planes through all non-H atoms are 0.092 and 0.091 Å for the two mol­ecules. The dihedral angle between the mol­ecular planes is 49.60 (4)°. The naphthalene and azulene ring systems are inclined at dihedral angles of 6.54 (12) and 5.68 (12)° in the two mol­ecules. The crystal structure exhibits two sets of parallel layers, a typical edge-to-face herringbone packing arrangement. The structure is stabilized by an extensive series of weak C—H(...)π inter­actions.

Related literature

For the structure and properties of azulene, see: Zhang & Petoud (2008 [triangle]); Dewar (1969 [triangle]); Wang et al. (1999 [triangle]). For applications of azulene derivatives, see: Ito et al. (2005 [triangle]); Lambert et al. (2003 [triangle]); Porsch et al. (1997 [triangle]); Schmitt et al. (1998 [triangle]). For the crystal structures of some organic semiconductors, see: Tan et al. (2009 [triangle]); Ando et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o592-scheme1.jpg

Experimental

Crystal data

  • C20H14
  • M r = 254.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o592-efi1.jpg
  • a = 6.0754 (8) Å
  • b = 7.6324 (11) Å
  • c = 14.5662 (19) Å
  • α = 97.997 (7)°
  • β = 97.179 (6)°
  • γ = 90.526 (7)°
  • V = 663.38 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.35 × 0.32 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.975, T max = 0.991
  • 3762 measured reflections
  • 2573 independent reflections
  • 2039 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.130
  • S = 1.04
  • 2573 reflections
  • 361 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker 1997 [triangle]); cell refinement: SAINT (Bruker 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810004897/sj2726sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004897/sj2726Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the program for New Century Excellent Talents in Lanzhou University (NCET), the NSFC (20503011, 20621091), the MOE (SRFDP 20050730007, 106152), the Chunhui project and the ‘111′ project.

supplementary crystallographic information

Comment

Azulene, whose structure consists of a cyclopentadiene ring fused with a cycloheptatriene ring, is an isomer of naphthalene. However its photophysical properties differ significantly from those of naphthalene. Because of its particular electronic structure, azulene is a versatile organic fragment with both an electron-rich five-membered ring and an electron-deficient seven-membered ring (Zhang & Petoud, 2008). The calculations resulting from various aromaticity theories indicate that azulene possesses much lower aromatic delocalization energy (e.g., 4.2 kcal/mol) (Dewar, 1969, Wang et al., 1999) compared to benzene, thiophene, and naphthalene. Due to this special character, azulene and its derivatives have attracted a growing interest in various areas of molecular materials, such as charge transfer complexes (Schmitt et al., 1998), conducting polymers (Porsch et al., 1997), liquid crystals (Ito et al., 2005), as well as nonlinear optical (NLO) materials (Lambert et al., 2003). This report on the crystal structure 2-(naphthalen-2-yl)azulene (I), is a preliminary report of our work on the synthesis and analysis of azulene-containing molecular devices.

Compound I crystallizes with two discrete molecules in the asymmetric unit of the triclinic unit cell (space group P1). The torsion angle between azulene and naphthalene plane is 6.54 (12)° for one and 5.68 (12) ° for the other. The crystal packing of compound I can be classified as an edge-to-face herringbone-type geometry, and the tilt angle between two molecular planes is 49.60 (4)°. Such packing is similar to that of some organic semiconductors with oligomers (Tan et al., 2009, Ando et al., 2005).The crystal packing exhibits weak C—H···π interactions (Table 1). Cg1, Cg4, Cg5, Cg6, Cg7 and Cg8 are centroids of the C1—C2—C3—C8—C9—C10, C13—C19, C1'-C2'-C7'-C8'-C9'-C10', C2'—C7', C11'-C12'-C13'-C19'-C20' and C13'—C19' rings respectively.

Experimental

To a mixture of azulen-2-yl trifluoromethanesulfonate (138 mg, 0.50 mmol) in THF (10 ml) were added 2-naphthalenylboronic acid (172 mg, 1.00 mmol), Pd(PPh3)4 (23 mg, 0.02 mmol) and Cs2CO3 saturated aqueous (1.0 ml). The mixture was refluxed overnight. The reaction was quenched with water, and extracted with ether (3 x 20 ml). Organic layers were washed with brine, dried (MgSO4), filtered, concentrated in vacuo and purified by flash chromatography (petroleum ether/CH2Cl2, 5:1) to provide the title compound as a dark-blue solid: mp 274–276 °C. Dark-blue crystalline blocks were obtained by slow evaporation of chloroform.

Refinement

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
Fig. 2.
Crystal packing for (I) viewed down the a axis.

Crystal data

C20H14Z = 2
Mr = 254.31F(000) = 268
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: P 1Melting point = 547–549 K
a = 6.0754 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6324 (11) ÅCell parameters from 1303 reflections
c = 14.5662 (19) Åθ = 2.9–24.7°
α = 97.997 (7)°µ = 0.07 mm1
β = 97.179 (6)°T = 293 K
γ = 90.526 (7)°Block, blue
V = 663.38 (16) Å30.35 × 0.32 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer2573 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −7→7
Tmin = 0.975, Tmax = 0.991k = −9→8
3762 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0764P)2] where P = (Fo2 + 2Fc2)/3
2573 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3852 (6)0.1216 (5)0.5454 (3)0.0531 (10)
H10.47270.08390.49880.064*
C20.4630 (7)0.1084 (5)0.6353 (3)0.0576 (11)
H20.60200.06170.64930.069*
C30.3356 (7)0.1650 (5)0.7080 (3)0.0526 (10)
C40.4094 (7)0.1490 (6)0.8036 (3)0.0630 (12)
H40.54530.09920.81990.076*
C50.2791 (9)0.2075 (7)0.8705 (3)0.0711 (13)
H50.32770.19720.93260.085*
C60.0742 (8)0.2825 (6)0.8480 (3)0.0653 (12)
H6−0.01160.32200.89490.078*
C70.0002 (7)0.2978 (5)0.7577 (3)0.0545 (10)
H7−0.13650.34820.74370.065*
C80.1255 (6)0.2393 (5)0.6846 (3)0.0471 (9)
C90.0509 (6)0.2508 (5)0.5908 (3)0.0480 (9)
H9−0.08590.30030.57590.058*
C100.1729 (6)0.1915 (4)0.5200 (2)0.0428 (9)
C110.0910 (6)0.1919 (5)0.4208 (3)0.0436 (9)
C12−0.1122 (6)0.2601 (5)0.3858 (3)0.0479 (9)
H12−0.21340.31570.42230.057*
C13−0.1395 (6)0.2324 (4)0.2889 (3)0.0443 (9)
C14−0.3185 (6)0.2829 (5)0.2301 (3)0.0496 (9)
H14−0.43080.33890.25990.060*
C15−0.3528 (7)0.2615 (6)0.1338 (3)0.0574 (11)
H15−0.48410.30570.10720.069*
C16−0.2149 (7)0.1818 (6)0.0712 (3)0.0584 (11)
H16−0.26760.18090.00840.070*
C17−0.0131 (7)0.1044 (6)0.0883 (3)0.0591 (11)
H170.04980.05870.03540.071*
C180.1091 (7)0.0848 (5)0.1718 (3)0.0540 (10)
H180.24180.02630.16750.065*
C190.0620 (6)0.1398 (5)0.2616 (3)0.0470 (9)
C200.1931 (6)0.1178 (5)0.3448 (3)0.0500 (9)
H200.32860.06190.34880.060*
C1'0.5370 (6)0.6436 (5)0.5553 (3)0.0456 (9)
H1'0.39750.59080.53520.055*
C2'0.6193 (6)0.6635 (4)0.6506 (3)0.0440 (9)
C3'0.4909 (7)0.6150 (5)0.7189 (3)0.0522 (10)
H3'0.35050.56330.69970.063*
C4'0.5691 (7)0.6425 (6)0.8116 (3)0.0607 (11)
H4'0.48300.60790.85480.073*
C5'0.7779 (7)0.7226 (6)0.8422 (3)0.0622 (11)
H5'0.82770.74460.90590.075*
C6'0.9095 (7)0.7690 (5)0.7797 (3)0.0569 (10)
H6'1.04960.81980.80080.068*
C7'0.8332 (6)0.7400 (5)0.6821 (3)0.0487 (9)
C8'0.9599 (6)0.7907 (5)0.6147 (3)0.0536 (10)
H8'1.10290.83740.63330.064*
C9'0.8756 (6)0.7720 (5)0.5237 (3)0.0486 (9)
H9'0.96260.80700.48090.058*
C10'0.6590 (6)0.7009 (4)0.4907 (2)0.0420 (8)
C11'0.5689 (6)0.6949 (4)0.3917 (3)0.0432 (9)
C12'0.6771 (6)0.7610 (5)0.3238 (3)0.0467 (9)
H12'0.81710.81590.33420.056*
C13'0.5428 (6)0.7320 (5)0.2383 (3)0.0456 (9)
C14'0.5962 (7)0.7764 (5)0.1547 (3)0.0526 (10)
H14'0.73340.83350.15770.063*
C15'0.4729 (7)0.7471 (6)0.0676 (3)0.0574 (11)
H15'0.53910.78710.01980.069*
C16'0.2669 (7)0.6676 (6)0.0410 (3)0.0569 (10)
H16'0.21590.6595−0.02240.068*
C17'0.1225 (7)0.5972 (5)0.0944 (3)0.0549 (10)
H17'−0.01190.55110.06200.066*
C18'0.1523 (6)0.5867 (5)0.1894 (3)0.0482 (9)
H18'0.03570.53450.21240.058*
C19'0.3336 (6)0.6442 (4)0.2542 (3)0.0435 (8)
C20'0.3596 (6)0.6260 (5)0.3491 (3)0.0459 (9)
H20'0.25430.57580.37950.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.047 (2)0.048 (2)0.063 (3)0.0042 (18)0.0056 (19)0.0059 (19)
C20.049 (2)0.047 (2)0.075 (3)0.0051 (19)0.003 (2)0.007 (2)
C30.048 (2)0.041 (2)0.066 (3)−0.0037 (18)0.0014 (19)0.0053 (18)
C40.055 (3)0.061 (3)0.070 (3)−0.003 (2)−0.007 (2)0.011 (2)
C50.075 (3)0.085 (3)0.049 (3)−0.009 (3)−0.008 (2)0.010 (2)
C60.062 (3)0.077 (3)0.054 (3)−0.005 (2)0.010 (2)−0.001 (2)
C70.049 (2)0.055 (2)0.057 (3)0.0003 (19)0.0057 (18)−0.0010 (19)
C80.049 (2)0.036 (2)0.053 (2)−0.0037 (17)0.0015 (17)0.0011 (17)
C90.044 (2)0.041 (2)0.059 (2)0.0024 (17)0.0063 (17)0.0077 (17)
C100.0410 (19)0.0329 (19)0.054 (2)−0.0020 (16)0.0063 (16)0.0046 (16)
C110.038 (2)0.0348 (19)0.058 (2)0.0015 (16)0.0054 (16)0.0067 (17)
C120.044 (2)0.045 (2)0.054 (3)0.0057 (17)0.0066 (17)0.0051 (17)
C130.0359 (19)0.0331 (18)0.065 (3)0.0057 (14)0.0081 (16)0.0081 (17)
C140.043 (2)0.047 (2)0.059 (3)0.0061 (17)0.0087 (17)0.0080 (18)
C150.050 (2)0.060 (3)0.064 (3)0.006 (2)0.0025 (19)0.016 (2)
C160.057 (3)0.066 (3)0.053 (2)−0.003 (2)0.0024 (19)0.013 (2)
C170.059 (3)0.059 (3)0.063 (3)0.001 (2)0.018 (2)0.012 (2)
C180.049 (2)0.051 (2)0.064 (3)0.0026 (18)0.0158 (19)0.0096 (19)
C190.042 (2)0.0363 (19)0.065 (2)0.0021 (15)0.0154 (17)0.0079 (17)
C200.046 (2)0.046 (2)0.059 (2)0.0073 (18)0.0093 (18)0.0084 (18)
C1'0.038 (2)0.039 (2)0.060 (2)−0.0012 (16)0.0065 (17)0.0073 (17)
C2'0.045 (2)0.0330 (19)0.055 (2)0.0021 (16)0.0100 (17)0.0065 (16)
C3'0.045 (2)0.053 (2)0.061 (3)−0.0004 (18)0.0114 (18)0.0114 (19)
C4'0.059 (3)0.072 (3)0.054 (3)0.007 (2)0.013 (2)0.013 (2)
C5'0.063 (3)0.072 (3)0.049 (2)0.013 (2)0.003 (2)0.003 (2)
C6'0.049 (2)0.058 (3)0.062 (3)0.0041 (19)0.0021 (19)0.0034 (19)
C7'0.043 (2)0.041 (2)0.062 (3)0.0055 (17)0.0073 (17)0.0083 (17)
C8'0.042 (2)0.051 (2)0.067 (3)−0.0062 (18)0.0022 (19)0.0087 (19)
C9'0.043 (2)0.045 (2)0.058 (2)0.0000 (17)0.0106 (17)0.0067 (18)
C10'0.045 (2)0.0319 (18)0.050 (2)0.0036 (16)0.0103 (16)0.0042 (16)
C11'0.042 (2)0.0345 (19)0.054 (2)0.0047 (16)0.0098 (16)0.0065 (16)
C12'0.041 (2)0.044 (2)0.056 (2)−0.0016 (17)0.0085 (17)0.0050 (17)
C13'0.044 (2)0.0386 (19)0.055 (2)0.0039 (16)0.0121 (17)0.0044 (16)
C14'0.053 (2)0.050 (2)0.057 (3)0.0013 (18)0.0178 (19)0.0058 (18)
C15'0.056 (3)0.063 (3)0.055 (3)0.005 (2)0.017 (2)0.0069 (19)
C16'0.059 (3)0.068 (3)0.042 (2)0.008 (2)0.0062 (18)0.0022 (19)
C17'0.047 (2)0.059 (3)0.056 (3)0.0019 (19)0.0024 (18)0.0024 (19)
C18'0.040 (2)0.041 (2)0.064 (3)−0.0002 (16)0.0087 (17)0.0077 (17)
C19'0.0365 (19)0.0377 (19)0.057 (2)0.0035 (15)0.0105 (16)0.0057 (16)
C20'0.038 (2)0.043 (2)0.058 (2)0.0019 (16)0.0082 (17)0.0098 (17)

Geometric parameters (Å, °)

C1—C21.353 (5)C1'—C10'1.382 (5)
C1—C101.426 (5)C1'—C2'1.402 (5)
C1—H10.9300C1'—H1'0.9300
C2—C31.411 (6)C2'—C7'1.415 (5)
C2—H20.9300C2'—C3'1.423 (5)
C3—C81.423 (5)C3'—C4'1.361 (6)
C3—C41.431 (6)C3'—H3'0.9300
C4—C51.362 (7)C4'—C5'1.397 (6)
C4—H40.9300C4'—H4'0.9300
C5—C61.395 (7)C5'—C6'1.365 (6)
C5—H50.9300C5'—H5'0.9300
C6—C71.357 (5)C6'—C7'1.425 (5)
C6—H60.9300C6'—H6'0.9300
C7—C81.410 (5)C7'—C8'1.412 (5)
C7—H70.9300C8'—C9'1.348 (5)
C8—C91.400 (5)C8'—H8'0.9300
C9—C101.373 (5)C9'—C10'1.418 (5)
C9—H90.9300C9'—H9'0.9300
C10—C111.469 (5)C10'—C11'1.471 (5)
C11—C201.391 (5)C11'—C12'1.401 (5)
C11—C121.408 (5)C11'—C20'1.407 (5)
C12—C131.386 (5)C12'—C13'1.390 (5)
C12—H120.9300C12'—H12'0.9300
C13—C141.389 (5)C13'—C14'1.384 (5)
C13—C191.488 (5)C13'—C19'1.490 (5)
C14—C151.379 (5)C14'—C15'1.379 (5)
C14—H140.9300C14'—H14'0.9300
C15—C161.395 (6)C15'—C16'1.372 (6)
C15—H150.9300C15'—H15'0.9300
C16—C171.376 (6)C16'—C17'1.394 (6)
C16—H160.9300C16'—H16'0.9300
C17—C181.371 (6)C17'—C18'1.386 (5)
C17—H170.9300C17'—H17'0.9300
C18—C191.383 (5)C18'—C19'1.383 (5)
C18—H180.9300C18'—H18'0.9300
C19—C201.396 (5)C19'—C20'1.398 (5)
C20—H200.9300C20'—H20'0.9300
C2—C1—C10122.0 (4)C10'—C1'—C2'121.3 (3)
C2—C1—H1119.0C10'—C1'—H1'119.3
C10—C1—H1119.0C2'—C1'—H1'119.3
C1—C2—C3120.7 (4)C1'—C2'—C7'120.0 (3)
C1—C2—H2119.7C1'—C2'—C3'122.1 (3)
C3—C2—H2119.7C7'—C2'—C3'117.8 (4)
C2—C3—C8118.4 (4)C4'—C3'—C2'121.4 (4)
C2—C3—C4122.4 (4)C4'—C3'—H3'119.3
C8—C3—C4119.2 (4)C2'—C3'—H3'119.3
C5—C4—C3119.4 (4)C3'—C4'—C5'120.3 (4)
C5—C4—H4120.3C3'—C4'—H4'119.8
C3—C4—H4120.3C5'—C4'—H4'119.8
C4—C5—C6121.5 (4)C6'—C5'—C4'120.6 (4)
C4—C5—H5119.2C6'—C5'—H5'119.7
C6—C5—H5119.2C4'—C5'—H5'119.7
C7—C6—C5120.1 (4)C5'—C6'—C7'120.3 (4)
C7—C6—H6120.0C5'—C6'—H6'119.9
C5—C6—H6120.0C7'—C6'—H6'119.9
C6—C7—C8121.6 (4)C8'—C7'—C2'118.0 (4)
C6—C7—H7119.2C8'—C7'—C6'122.5 (4)
C8—C7—H7119.2C2'—C7'—C6'119.4 (4)
C9—C8—C7122.7 (3)C9'—C8'—C7'120.7 (4)
C9—C8—C3119.2 (4)C9'—C8'—H8'119.7
C7—C8—C3118.1 (4)C7'—C8'—H8'119.7
C10—C9—C8122.3 (3)C8'—C9'—C10'122.5 (3)
C10—C9—H9118.9C8'—C9'—H9'118.8
C8—C9—H9118.9C10'—C9'—H9'118.8
C9—C10—C1117.5 (3)C1'—C10'—C9'117.4 (3)
C9—C10—C11122.9 (3)C1'—C10'—C11'122.2 (3)
C1—C10—C11119.5 (3)C9'—C10'—C11'120.3 (3)
C20—C11—C12107.7 (3)C12'—C11'—C20'108.1 (3)
C20—C11—C10126.5 (3)C12'—C11'—C10'125.3 (3)
C12—C11—C10125.7 (3)C20'—C11'—C10'126.5 (3)
C13—C12—C11110.1 (3)C13'—C12'—C11'109.4 (3)
C13—C12—H12124.9C13'—C12'—H12'125.3
C11—C12—H12124.9C11'—C12'—H12'125.3
C12—C13—C14126.5 (3)C14'—C13'—C12'125.9 (4)
C12—C13—C19105.9 (3)C14'—C13'—C19'127.1 (4)
C14—C13—C19127.6 (4)C12'—C13'—C19'107.0 (3)
C15—C14—C13129.0 (4)C15'—C14'—C13'128.5 (4)
C15—C14—H14115.5C15'—C14'—H14'115.7
C13—C14—H14115.5C13'—C14'—H14'115.7
C14—C15—C16128.1 (4)C16'—C15'—C14'129.5 (4)
C14—C15—H15116.0C16'—C15'—H15'115.3
C16—C15—H15116.0C14'—C15'—H15'115.3
C17—C16—C15129.9 (4)C15'—C16'—C17'130.0 (4)
C17—C16—H16115.1C15'—C16'—H16'115.0
C15—C16—H16115.1C17'—C16'—H16'115.0
C18—C17—C16129.6 (4)C18'—C17'—C16'128.7 (4)
C18—C17—H17115.2C18'—C17'—H17'115.7
C16—C17—H17115.2C16'—C17'—H17'115.7
C17—C18—C19128.9 (4)C19'—C18'—C17'128.2 (4)
C17—C18—H18115.6C19'—C18'—H18'115.9
C19—C18—H18115.6C17'—C18'—H18'115.9
C18—C19—C20126.8 (4)C18'—C19'—C20'126.2 (3)
C18—C19—C13126.9 (4)C18'—C19'—C13'128.1 (3)
C20—C19—C13106.3 (3)C20'—C19'—C13'105.6 (3)
C11—C20—C19109.9 (3)C19'—C20'—C11'109.8 (3)
C11—C20—H20125.0C19'—C20'—H20'125.1
C19—C20—H20125.0C11'—C20'—H20'125.1
C10—C1—C2—C3−0.3 (6)C10'—C1'—C2'—C7'−1.4 (5)
C1—C2—C3—C8−1.2 (6)C10'—C1'—C2'—C3'176.2 (3)
C1—C2—C3—C4178.3 (4)C1'—C2'—C3'—C4'−176.9 (4)
C2—C3—C4—C5179.5 (4)C7'—C2'—C3'—C4'0.7 (5)
C8—C3—C4—C5−1.0 (6)C2'—C3'—C4'—C5'1.1 (6)
C3—C4—C5—C60.2 (7)C3'—C4'—C5'—C6'−2.2 (7)
C4—C5—C6—C70.3 (8)C4'—C5'—C6'—C7'1.5 (7)
C5—C6—C7—C80.1 (7)C1'—C2'—C7'—C8'−1.4 (5)
C6—C7—C8—C9178.9 (4)C3'—C2'—C7'—C8'−179.1 (3)
C6—C7—C8—C3−0.9 (6)C1'—C2'—C7'—C6'176.3 (3)
C2—C3—C8—C91.1 (5)C3'—C2'—C7'—C6'−1.4 (5)
C4—C3—C8—C9−178.4 (4)C5'—C6'—C7'—C8'177.9 (4)
C2—C3—C8—C7−179.1 (4)C5'—C6'—C7'—C2'0.3 (6)
C4—C3—C8—C71.3 (5)C2'—C7'—C8'—C9'2.3 (5)
C7—C8—C9—C10−179.2 (4)C6'—C7'—C8'—C9'−175.4 (3)
C3—C8—C9—C100.5 (5)C7'—C8'—C9'—C10'−0.3 (6)
C8—C9—C10—C1−2.0 (5)C2'—C1'—C10'—C9'3.3 (5)
C8—C9—C10—C11175.9 (3)C2'—C1'—C10'—C11'−174.8 (3)
C2—C1—C10—C91.9 (5)C8'—C9'—C10'—C1'−2.5 (5)
C2—C1—C10—C11−176.0 (3)C8'—C9'—C10'—C11'175.7 (3)
C9—C10—C11—C20−172.8 (4)C1'—C10'—C11'—C12'175.6 (4)
C1—C10—C11—C205.0 (5)C9'—C10'—C11'—C12'−2.4 (5)
C9—C10—C11—C123.7 (5)C1'—C10'—C11'—C20'−3.0 (5)
C1—C10—C11—C12−178.5 (4)C9'—C10'—C11'—C20'178.9 (4)
C20—C11—C12—C13−0.7 (4)C20'—C11'—C12'—C13'−1.3 (4)
C10—C11—C12—C13−177.7 (3)C10'—C11'—C12'—C13'179.8 (3)
C11—C12—C13—C14−179.4 (3)C11'—C12'—C13'—C14'−178.7 (4)
C11—C12—C13—C190.0 (4)C11'—C12'—C13'—C19'1.1 (4)
C12—C13—C14—C15178.8 (4)C12'—C13'—C14'—C15'178.2 (4)
C19—C13—C14—C15−0.5 (6)C19'—C13'—C14'—C15'−1.5 (7)
C13—C14—C15—C160.5 (7)C13'—C14'—C15'—C16'0.2 (8)
C14—C15—C16—C170.3 (8)C14'—C15'—C16'—C17'1.4 (8)
C15—C16—C17—C18−0.3 (8)C15'—C16'—C17'—C18'−1.2 (8)
C16—C17—C18—C19−0.8 (7)C16'—C17'—C18'—C19'0.1 (7)
C17—C18—C19—C20−179.4 (4)C17'—C18'—C19'—C20'−177.9 (4)
C17—C18—C19—C131.3 (7)C17'—C18'—C19'—C13'0.0 (6)
C12—C13—C19—C18180.0 (4)C14'—C13'—C19'—C18'1.1 (6)
C14—C13—C19—C18−0.6 (6)C12'—C13'—C19'—C18'−178.7 (3)
C12—C13—C19—C200.6 (4)C14'—C13'—C19'—C20'179.3 (4)
C14—C13—C19—C20−179.9 (3)C12'—C13'—C19'—C20'−0.4 (4)
C12—C11—C20—C191.1 (4)C18'—C19'—C20'—C11'177.9 (3)
C10—C11—C20—C19178.1 (3)C13'—C19'—C20'—C11'−0.4 (4)
C18—C19—C20—C11179.6 (4)C12'—C11'—C20'—C19'1.0 (4)
C13—C19—C20—C11−1.1 (4)C10'—C11'—C20'—C19'179.9 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the C1–C3,C8–C10, C13–C19, C1'-C2',C7'–C10', C2'–C7', C11'–C13',C19',C20' and C13'–C19' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg5i0.932.843.488 (4)128
C7—H7···Cg6ii0.932.813.544 (4)137
C8'—H8'···Cg1iii0.932.823.456 (4)126
C14—H14···Cg7ii0.932.753.430 (4)131
C14'—H14'···Cg4iii0.932.773.485 (4)135
C18—H18···Cg8i0.932.733.446 (4)134
C18'—H18'···Cg40.932.793.463 (4)130

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2726).

References

  • Ando, S., Nishida, J.-i., Fujiwara, E., Tada, H., Inoue, Y., Tokito, S. & Yamashita, Y. (2005). Chem. Mater.17, 1261–1264.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dewar, M. J. S. (1969). The molecular orbital theory of organic chemistry New York: McGraw-Hill.
  • Ito, S., Ando, M., Nomura, A., Morita, N., Kabuto, C., Mukai, H., Ohta, K., Kawakami, J., Yoshizawa, A. & Tajiri, A. (2005). J. Org. Chem. 70, 3939–3949. [PubMed]
  • Lambert, C., Noll, G., Zabel, M., Hampel, F., Schmalzlin, E., Brauche, C. & Meerholz, K. (2003). Chem. Eur. J.9, 4232–4239. [PubMed]
  • Porsch, M., Sigl-Seifert, G. & Daub, J. (1997). Adv. Mater.9, 635–639.
  • Schmitt, S., Baumgarten, M., Simon, J. & Hafner, K. (1998). Angew. Chem.110, 1129–1133.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tan, L., Zhang, L., Jiang, X., Yang, L., Wang, L., Wang, Z., Li, L., Hu, W., Shuai, Z., Li, L. & Zhu, D. (2009). Adv. Funct. Mater. 19, 272–276.
  • Wang, P., Zhu, P. & Ye, C. (1999). J. Phys. Chem. A, 103, 7076–7082.
  • Zhang, J. & Petoud, S. (2008). Chem. Eur. J.14, 1264–1272. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography