PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o645.
Published online 2010 February 17. doi:  10.1107/S1600536810005647
PMCID: PMC2983522

1,3,3-Trimethyl-5-nitro-1-phenyl­indane

Abstract

In the title compound, C18H19NO2, the five-membered ring of the indane fragment adopts an envelope conformation with the unsubstituted carbon atom at the flap displaced by 0.412 (3) Å from the plane formed by the other four atoms. The nitro group forms a dihedral angle of 5.3 (2)° with the indane benzene ring while the dihedral angle between the phenyl ring and the indane benzene ring is 76.74 (9)°.

Related literature

For general background to the synthesis, properties and applications of indane and its derivatives, see: Clark et al. (1998 [triangle]); Numata et al. (1976 [triangle]); Aliakbar et al. (2007 [triangle]). For a related structure, see: Men et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o645-scheme1.jpg

Experimental

Crystal data

  • C18H19NO2
  • M r = 281.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o645-efi1.jpg
  • a = 8.306 (3) Å
  • b = 17.600 (3) Å
  • c = 12.090 (4) Å
  • β = 120.50 (3)°
  • V = 1522.8 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 292 K
  • 0.58 × 0.48 × 0.42 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 3123 measured reflections
  • 2750 independent reflections
  • 1600 reflections with I > 2σ(I)
  • R int = 0.009
  • 3 standard reflections every 200 reflections intensity decay: 2.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.195
  • S = 1.12
  • 3524 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005647/rz2417sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005647/rz2417Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

Indane has found wide industrial applications in rubber industry and as aviation fuel, lubricant, stabilizer and plasticizer (Clark et al., 1998; Numata et al., 1976). Indane derivatives are important intermediates for biomedical and organic synthesis. The title compound can efficiently be synthesized from 1,1,3-trimethyl-3-phenylindane by nitration (Men et al., 2008; Aliakbar et al., 2007), but no report on the crystal structure has been found. We report therefore herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles of the phenylindane moiety are comparable with those observed in 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indane (Men et al., 2008). The C4, C5, C8, C7, C9 atoms in the indane fragment are not coplanar, atom C8 deviating by 0.412 (3) Å from the plane formed by the other four atoms. The indane benzene ring (C1—C6) and the phenyl ring (C13—18) form a dihedral angle of 76.74 (9)°. The nitro group is twisted by 5.3 (2)° with respect to the indane benzene ring. The O2—N1—C1—C2 and O1—N1—C1—C2 torsion angles are -175.0 (2)° and 4.8 (4)°, respectively.

Experimental

1,1,3-Trimethyl-3-phenylindane (23.6 g, 0.10 mol) was dissolved in a solution of acetic anhydride (120 ml) and chloroform (30 ml) in a three-necked flask. After stirring, the mixture was cooled down to 278 K, and concentrated nitric acid (8.2 ml, 0.12 mol) was added dropwise in 30 min. Then, the mixture was stirred for 1 h at 283-289 K and poured into water (200 ml). The organic layer was washed with 10% NaOH (20 ml) and water (150 ml), then dried over anhydrous magnesium sulfate. After the solvent was removed under reduced pressure, the shallow yellow residue was recrystallized from a methanol/ethyl solution (2:1 v/v) to give a colourless solid (16.8 g, yield 59.7%, m.p. 402-404 K). Single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of a methanol solution over a period of several days.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C18H19NO2F(000) = 600
Mr = 281.34Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 8.306 (3) Åθ = 5.4–6.2°
b = 17.600 (3) ŵ = 0.08 mm1
c = 12.090 (4) ÅT = 292 K
β = 120.50 (3)°Block, colourless
V = 1522.8 (9) Å30.58 × 0.48 × 0.42 mm
Z = 4

Data collection

Enraf–Nonius CAD4 diffractometerRint = 0.009
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.7°
graphiteh = −9→10
ω/2–θ scansk = −21→0
3123 measured reflectionsl = −8→14
2750 independent reflections3 standard reflections every 200 reflections
1600 reflections with I > 2σ(I) intensity decay: 2.1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.1033P)2] where P = (Fo2 + 2Fc2)/3
3524 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3148 (4)0.65100 (12)−0.0098 (2)0.0834 (8)
O20.0977 (4)0.56794 (15)−0.0607 (2)0.0874 (8)
N10.2608 (4)0.58823 (15)0.0018 (2)0.0591 (7)
C10.3981 (4)0.53506 (15)0.0954 (2)0.0462 (7)
C20.5784 (4)0.55976 (15)0.1727 (3)0.0547 (8)
H20.61230.60890.16470.066*
C30.7087 (4)0.51059 (14)0.2623 (3)0.0510 (7)
H30.83130.52640.31620.061*
C40.6543 (3)0.43718 (14)0.2711 (2)0.0414 (7)
C50.4721 (4)0.41334 (14)0.1900 (2)0.0412 (6)
C60.3404 (4)0.46264 (15)0.1011 (2)0.0470 (7)
H60.21740.44740.04720.056*
C70.7734 (4)0.37453 (13)0.3611 (2)0.0433 (7)
C80.6503 (4)0.30424 (14)0.2923 (3)0.0498 (7)
H8A0.68880.28150.23630.060*
H8B0.66360.26660.35500.060*
C90.4461 (4)0.33044 (14)0.2134 (3)0.0475 (7)
C100.9639 (4)0.36996 (17)0.3688 (3)0.0556 (8)
H10A0.94490.36810.28360.083*
H10B1.02860.32500.41490.083*
H10C1.03690.41390.41260.083*
C110.3445 (4)0.32497 (16)0.2899 (3)0.0629 (8)
H11A0.22240.34710.24090.094*
H11B0.41470.35180.36960.094*
H11C0.33300.27260.30700.094*
C120.3375 (5)0.28566 (17)0.0888 (3)0.0691 (9)
H12A0.39570.29200.03820.104*
H12B0.21130.30400.04160.104*
H12C0.33700.23280.10820.104*
C130.8050 (3)0.38424 (14)0.4966 (2)0.0424 (7)
C140.7377 (4)0.44583 (15)0.5326 (3)0.0525 (7)
H140.66840.48320.47270.063*
C150.7731 (5)0.45205 (18)0.6572 (3)0.0657 (9)
H150.72720.49360.68010.079*
C160.8742 (5)0.39802 (18)0.7466 (3)0.0649 (9)
H160.89930.40300.83050.078*
C170.9385 (4)0.33629 (17)0.7115 (3)0.0619 (8)
H171.00520.29860.77140.074*
C180.9053 (4)0.32970 (15)0.5890 (3)0.0536 (8)
H180.95120.28760.56720.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.105 (2)0.0546 (14)0.0831 (18)0.0145 (13)0.0427 (16)0.0192 (12)
O20.0538 (15)0.114 (2)0.0807 (18)0.0204 (14)0.0243 (14)0.0379 (15)
N10.0687 (19)0.0662 (17)0.0489 (15)0.0182 (15)0.0348 (15)0.0129 (13)
C10.0531 (18)0.0503 (16)0.0419 (15)0.0122 (13)0.0290 (14)0.0097 (12)
C20.066 (2)0.0441 (15)0.0586 (18)0.0014 (14)0.0355 (17)0.0093 (14)
C30.0448 (17)0.0513 (16)0.0500 (17)−0.0111 (13)0.0189 (15)−0.0031 (13)
C40.0422 (16)0.0455 (14)0.0407 (15)0.0016 (12)0.0240 (14)0.0024 (11)
C50.0432 (15)0.0465 (14)0.0385 (14)−0.0023 (12)0.0241 (13)−0.0024 (12)
C60.0435 (16)0.0579 (17)0.0416 (15)0.0000 (13)0.0232 (13)0.0009 (13)
C70.0430 (16)0.0428 (14)0.0445 (16)0.0007 (11)0.0225 (14)0.0013 (12)
C80.0589 (19)0.0421 (14)0.0493 (17)−0.0005 (13)0.0281 (16)−0.0057 (13)
C90.0499 (17)0.0459 (15)0.0461 (16)−0.0061 (12)0.0240 (14)−0.0021 (12)
C100.0440 (17)0.0702 (19)0.0536 (18)0.0084 (14)0.0255 (15)0.0057 (14)
C110.063 (2)0.0612 (18)0.073 (2)−0.0036 (15)0.0405 (18)0.0111 (16)
C120.070 (2)0.0606 (19)0.0594 (19)−0.0165 (16)0.0203 (18)−0.0095 (16)
C130.0376 (15)0.0455 (14)0.0427 (15)−0.0034 (11)0.0194 (13)−0.0001 (12)
C140.0540 (18)0.0528 (16)0.0495 (16)0.0063 (13)0.0254 (15)−0.0006 (13)
C150.071 (2)0.074 (2)0.0593 (19)0.0067 (18)0.0385 (18)−0.0074 (17)
C160.070 (2)0.086 (2)0.0445 (17)−0.0004 (18)0.0338 (17)0.0021 (17)
C170.064 (2)0.070 (2)0.0500 (18)0.0018 (16)0.0277 (17)0.0146 (15)
C180.0608 (19)0.0491 (16)0.0548 (18)0.0069 (14)0.0323 (16)0.0074 (14)

Geometric parameters (Å, °)

O1—N11.227 (3)C9—C111.539 (4)
O2—N11.223 (3)C10—H10A0.9600
N1—C11.465 (3)C10—H10B0.9600
C1—C21.373 (4)C10—H10C0.9600
C1—C61.376 (4)C11—H11A0.9600
C2—C31.380 (4)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.390 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.386 (4)C12—H12C0.9600
C4—C71.512 (3)C13—C181.385 (4)
C5—C61.382 (4)C13—C141.387 (3)
C5—C91.522 (3)C14—C151.385 (4)
C6—H60.9300C14—H140.9300
C7—C131.531 (3)C15—C161.363 (4)
C7—C101.540 (4)C15—H150.9300
C7—C81.551 (4)C16—C171.370 (4)
C8—C91.535 (4)C16—H160.9300
C8—H8A0.9700C17—C181.366 (4)
C8—H8B0.9700C17—H170.9300
C9—C121.524 (4)C18—H180.9300
O2—N1—O1123.2 (3)C8—C9—C11112.2 (2)
O2—N1—C1118.3 (3)C7—C10—H10A109.5
O1—N1—C1118.5 (3)C7—C10—H10B109.5
C2—C1—C6123.1 (2)H10A—C10—H10B109.5
C2—C1—N1118.4 (2)C7—C10—H10C109.5
C6—C1—N1118.5 (3)H10A—C10—H10C109.5
C1—C2—C3119.1 (2)H10B—C10—H10C109.5
C1—C2—H2120.5C9—C11—H11A109.5
C3—C2—H2120.5C9—C11—H11B109.5
C2—C3—C4119.1 (3)H11A—C11—H11B109.5
C2—C3—H3120.4C9—C11—H11C109.5
C4—C3—H3120.4H11A—C11—H11C109.5
C5—C4—C3120.5 (2)H11B—C11—H11C109.5
C5—C4—C7111.6 (2)C9—C12—H12A109.5
C3—C4—C7127.9 (2)C9—C12—H12B109.5
C6—C5—C4120.6 (2)H12A—C12—H12B109.5
C6—C5—C9128.0 (2)C9—C12—H12C109.5
C4—C5—C9111.5 (2)H12A—C12—H12C109.5
C1—C6—C5117.6 (3)H12B—C12—H12C109.5
C1—C6—H6121.2C18—C13—C14117.5 (2)
C5—C6—H6121.2C18—C13—C7119.5 (2)
C4—C7—C13112.52 (19)C14—C13—C7123.0 (2)
C4—C7—C10111.0 (2)C15—C14—C13120.4 (3)
C13—C7—C10109.2 (2)C15—C14—H14119.8
C4—C7—C8100.6 (2)C13—C14—H14119.8
C13—C7—C8111.82 (19)C16—C15—C14120.9 (3)
C10—C7—C8111.6 (2)C16—C15—H15119.6
C9—C8—C7108.3 (2)C14—C15—H15119.6
C9—C8—H8A110.0C15—C16—C17119.2 (3)
C7—C8—H8A110.0C15—C16—H16120.4
C9—C8—H8B110.0C17—C16—H16120.4
C7—C8—H8B110.0C18—C17—C16120.5 (3)
H8A—C8—H8B108.4C18—C17—H17119.8
C5—C9—C12112.4 (2)C16—C17—H17119.8
C5—C9—C8100.8 (2)C17—C18—C13121.5 (2)
C12—C9—C8111.8 (2)C17—C18—H18119.2
C5—C9—C11110.2 (2)C13—C18—H18119.2
C12—C9—C11109.4 (2)
O2—N1—C1—C2−175.0 (2)C10—C7—C8—C9−144.1 (2)
O1—N1—C1—C24.8 (3)C6—C5—C9—C1245.0 (3)
O2—N1—C1—C65.4 (3)C4—C5—C9—C12−134.4 (2)
O1—N1—C1—C6−174.9 (2)C6—C5—C9—C8164.2 (2)
C6—C1—C2—C3−1.1 (4)C4—C5—C9—C8−15.2 (2)
N1—C1—C2—C3179.2 (2)C6—C5—C9—C11−77.2 (3)
C1—C2—C3—C40.6 (4)C4—C5—C9—C11103.4 (3)
C2—C3—C4—C50.7 (4)C7—C8—C9—C525.7 (2)
C2—C3—C4—C7179.7 (2)C7—C8—C9—C12145.3 (2)
C3—C4—C5—C6−1.5 (3)C7—C8—C9—C11−91.4 (3)
C7—C4—C5—C6179.3 (2)C4—C7—C13—C18177.5 (2)
C3—C4—C5—C9178.0 (2)C10—C7—C13—C18−58.8 (3)
C7—C4—C5—C9−1.2 (3)C8—C7—C13—C1865.2 (3)
C2—C1—C6—C50.3 (4)C4—C7—C13—C14−2.6 (3)
N1—C1—C6—C5180.0 (2)C10—C7—C13—C14121.0 (3)
C4—C5—C6—C11.0 (3)C8—C7—C13—C14−115.0 (3)
C9—C5—C6—C1−178.4 (2)C18—C13—C14—C150.8 (4)
C5—C4—C7—C13−102.2 (2)C7—C13—C14—C15−179.1 (3)
C3—C4—C7—C1378.7 (3)C13—C14—C15—C160.0 (5)
C5—C4—C7—C10135.1 (2)C14—C15—C16—C17−1.1 (5)
C3—C4—C7—C10−44.0 (3)C15—C16—C17—C181.5 (5)
C5—C4—C7—C816.9 (2)C16—C17—C18—C13−0.6 (4)
C3—C4—C7—C8−162.2 (2)C14—C13—C18—C17−0.5 (4)
C4—C7—C8—C9−26.4 (2)C7—C13—C18—C17179.4 (3)
C13—C7—C8—C993.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2417).

References

  • Aliakbar, T., Abdelkhalek, R. & Jacques, M. (2007). Catal. Commun.8, 1153–1155.
  • Clark, W. M., Tickner-Eldridge, A. M., Huang, G. K.,Pridgen, L. N., Olsen, M. A., Mills, R. J., Lantos, I. & Baine, N. H. (1998). J. Am. Chem. Soc.120, 4550–4551.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  • Men, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847. [PMC free article] [PubMed]
  • Numata, S., Tsutomu, T. & Toshio, T. (1976). US Patent 3985818.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography